

Troubleshooting and Repairing Your COMMODQRE

Troubleshooting and Repaining Your COMMODQRE ART MARGOLIS

FIRST EDITION

 FIRST PRINTINGCopyright © 1989 by TAB 800KS inc. Printed in the United States of America

Reproduction or publication of the content in any manner, without express permission of the publisher, is prohibited, No liability is assumed with respect to the use of the information herein.

Library of Congress Cataloging in Publication Data
Margolis, Art.
Troubleshooting and Repairing Your Commodore $128 /$ by Ant Margolis.
p. cm.

Includes index.
ISBN 0-8306-9099-9 ISBN 0-8306-9399-8 (pbk.)

1. Commodore 128 (Computer) 2. Commodore 128 (Computer)--Maintenance and repair. 1. Title. II. Title: Trouble shooting and repairing your Commodore 128.
OA76.8.C645M37 1988
621,391'6—dc19 88-20129
CIP
TAB BOOKS Inc. offers software for sale. For information and a catalog,
please contact TAB Software Dopartment, Blue Ridge Summit, PA 172940850.

Questions ragarding the content of this book should be addressed to:

Reader Inquiry Branch
TAB BOOKS Inc.
Blue Ridge Summit, PA $17294-0214$

Contents

Acknowledgments viii
Test Point Charts ix
Introduction X
1 C128 Briefing Session 1The Symptom Devices-Diagnostic Programming-Printboard Landmarks-An Overview of Trouble
Analysis
2 Disassembly 20
Getting the Hood Up-Freeing the Printboard-The Power Supply Box-Visual Repairs-Cleaning Static Electricity
3 Chip Location Guide 39
Specific Information-Chip Survey
4 Chip Changing Techniques 49
The Rugged Chips-Tristating TTLs-The Sensitive Chips-The DIP Packago-Socketed Chips- Soldered-in Chips
5 The LSI Chips 67
The Microptocessors-The 6526 Complex Interface Adapters-The VIC and Video Controller Chips-6581 Sound interlace Device-The PLA and MMU
6 Dynamic Random Access Memory 86
Static RAM-Dynamic RAM
7 Read Only Memory 104
Block Diagram-The Rest of the ROMs
8 Other Integrated Circuits
The 7408 Hex Inverters-The 7407 Hex Bulfer/Drivers-The 74LS08 Quad 2-Input AND Gates-The 74LS00 and 74LSO3 NAND Gates-The 74F32 and 74LS32 Quad 2-Input OR Gates-The 74LS74 Dual D Flip-Flop-The 74LS138 1-ot-8 Decoder-The 74LS257 Multiplexers-The 74LS373 Octal Latches-The 74LS244 Octal Drivers-The Transceiver 74F245-The Schmitt Trigger 74LS14-The 4066 Quad Bilateral Switch-The 556 Dual Timer-Oither Chip-Like Components118
9 The System Block Diagram 150
Block Diagram-The B502 and Dynamic RAM-The MPU and ROM-MPA and C1A Intertace-The MPU and VIC-The MPU and SID-The MPU and the Video Comtroller
10 Servicing the Logic Gates 167
Decimal and Binary-Hexadecimal-Peek and Poke-Gates-Gate Testing Techniques
11 Servicing Digital Registers 188
Flip-Flops-Computing Registers
12 8502 Microprocessor
Address and Data Bus Lines-Stack-Arithmetic Logic Unit-Accumulator-Instruction Sef-Index Registers-Flag Register-The 8502 Signals-Testing207
13 Z80 Coprocessor 231280 Block Diagram-z80 Schematic Diagram-280 Instruction Set-280 Connections-The Com-puter Won't Start
14 Programmed Logic Array 240
PLA Internals-PLA Pinout
15 Memory Management Unit 249
Bank Contents-MMU Registers-Mode Configuration Register-Ram Configuration Register-The Page Pointers-Varsion Register-The MMU Pinout
16 All the Memory Maps 266
The C128 Maps-The C64 Maps-The CPIM Map-PEEK and POKE-MEMORY and FILL
17 The Clocks280
Sine Wave to Square Wave-8502 Timing Control-Other Timing Signals-The Z80 Timing-Testing the Clock
18 Address, Data and Control Buses 298
All Those Address Buses-The Data Bus-The 80-Column Display Bus-The Control Lines-Testing
the Bus Lines
19 Complex Interface Adapters 321
Addressing and Controlling-Intemal Data Transfer-Timing-l10 Ports-PC and \cdot FLAG Pins- Timers - Real Time Clock - Interrupt Control Register - Serial Data Register - Operation - CIA1-CIA2-Testing
20 8564 Video Interface Chip 337
VIC Graphics-VIC Pin-by-Pin Operation-Sprites-Other VIC Features-Light Pen - Video Output-- Tosting
21 80-Column 8563 Video Controller 354
The 8563 RAM-Pin-by-Pin Checkoul
22 Sound Interface Device 364
Pinout-Special Inputs-Operation-Aegisters-Timing-Testing
23 Inputs and Outputs 379
Checking Out IO Troubles-RF Modulator
24 The Power Supply 398
First Step-Point-by-Point Checkout
Appendix 406
Index 431

Acknowledgments

I' d like to thank my wife Lea for running inter1 ference and fielding internuptions, as usual, while I wrote the book. I would also like to thank my favorite photographer, my son-in-law, Michael Gorzeck, for taking the step-by-step disassembly photos
in Chapter 2. I hope your computing is uninterrupted, but should your C128 start acting up, perhaps this book will be directly responsible for getting it up and working once again.

Test Point Charts

U Number	Generic Number	Glven Name	Figure	Table
U1	6526	Complex Interface Adapter	19-9	
U2	4066B	Ched Bilateral Swrtch	8.26	8-10
U3	74LS138	1-of-8 Decoder	8-16	
U4	6526	Complex Interlace Adapter	19-10	
U5	6581	Sound Interface Chip	22-2	
U6	8502	Microprocessor	12-20	
U7	8722	Memory Management Unir	15-6	
U8	$74 \mathrm{LS08}$	Guad 2-Input AND Gate	8-8	8-3
U8	74F32	Quad 2-Input OR Gate	8-13	8.5
U10	280	Microprocessor	13-4	
U11	8721	Programmed Logic Array	14-6	
U12	74LS373	Octal 3-State D Latch	0.21	8-8
U13	74LS244	Octal 3-Stase Driver	0-22	8-9
U14	74LS257	Quad 2-mput Multiplexer	8-19	
U15	74LS257	Quad 2-Input Multiptexer	8-19	
416	746514	Hex Schmitt Trigger	8-24	
U17	74.5373	Octal 3-State D Latch	8.21	8-8
U18	390059-01	Character ROM	7.3	
U19	2016	Color RAM	6-7	
U20	40668	Ouad Bilateral Switch	8-26	8.10
U21	8564	Video Interface Chip	20.1	
U22	6563	Video Controller	21-3	
U23	4416	DRAM	21.2	
U24	74LS244	Oclal 3-Stale Driver	8-22	8-9
U25	4416	DRAM	21-2	
U28	74.5257	Quad 2-Input Mulliplexer	8-19	
U27	556	Timer	8-28	
U28	8701	Clock	17-16	
429	7406	Hex Inverter Buffer	8-4	8.1
U30	7406	Hex Inverter Butfer	8-4	8.1
U31	741500	Quad 2-Input NaND Gate	$8-9$	8-4
432	251913-01	Read Only Memory	7-6	
U33	318018-02	Read Only Memory	7-6	
U34	318019-02	Read Only Memory	7.6	
U35	318020-03	Read Only Memory	7.6	
U36	Emply Socket for	Function ROM	-	
037	7406	Hex Inventer Buffer	8-4	8.1
U38-U53	4164	DRAMS	6-1	
U54	74LS32	Quad 2-Inpur OP Gate	8-13	8-5
U55	$74 F 245$	Transcoiver	8-23	
U56	74.574	Dual D Flip-Flop	8-14	
U57	7407	Hex Buffer	8-5	8-2
U58	741503	Quad 2-Input NaND Gate	8-8	8-4
U59	7812	12 Volt Regulator	24-3	
U60	7407	Hex Buffer	8-5	8.2
U61	74.508	Ouad 2-Input AND Gate	8-6	$8-3$
U62	74LS244	Octal 3-State Driver	8-22	8-9
U63	7406	Hex Inverter Bufler	8-4	$8-1$

Introduction

After I reassemble a computer like a C64 or C128 following a repair job, 1 usually type in some little test program and run it. One of my quick favorites is this two line tester:

10 ?RND(1);
20 GOTO10
The test lines cause the screen to fill up with a stream of scrolling decimal numbers. This tells me that most of the chips in the machine are okay because they are participating in the action. It is a good, fast checkout exercise.

One time, after taking the step-by-step disassembly photos for Chapter 2 and reassembling my C128. I routincly typed in the test lines. The line number 10 appeared fine, but when I hit the ? Key to command a PRINT, nothing happened. I tried the \therefore It didn't work either.

Instead of using the ?, 1 typed in PRINT and left off the semicolon. Then I ran the lines. Instead of filling the entire screen with decimal numbers, a
row of decimal numbers started scrolling up the left side of the screen.

1 breathed a sigh of relief. The C128 itself was okay. It looked like the trouble was strictly related to the keyboard. I took the top off the machine again and spotted the trouble. The keyboard port phag was not seated properly. I had evidently pulled the plug out a fraction during the final moves of the reassembly. I seated it firmly and put the screws back in. Sure enough, all was well again.

Easy-to-fix trouble is typical of the majority of computer problems. If you develop a simple problem and take it into a repair shop, you'll be presented with a bill-after the shop gets to your C128, takes it apart, diagnoses the circuit area, pinpoints the cause, and remedies it. In addition, days and even weeks could elapse without the use of your computer.

To avoid a lot of expense and hassle, all you have to do is learn how your C128 works, from the viewpoint of the hardware. Even though you might be a top programmer or an expert computer opera-
tor, the troubleshooting and repaining of your C128 can only be accomplished by approaching the machine from a hardware point of view. It will be easier to gain the repairer's viewpoint if you are a programmer or operator, but the hardware approach is different from the software approach, and nequires a different dimension of thought.

A car as an extension of your legs is analogous to a computer as an extension of your brains, and driving a car is analogous to programming a computer. The average auto driver knows little about how the car's engine burns grasoline. In the same way, the programmer has only a smattering of what the computer's circuits are doing as it consumes electricity. When the auto breaks down, the driver takes it to the mechanic to be fixed. When the C128 breaks down, the programmer looks for a computer troubleshooter.

In one respect, this book, besides covering routine, casy repairs, is the manual the computer technician uses to make the necessary tests, no matter how difficult, to get your C128 "up" and working again. However, this book is much more than that. Besides containing the specific information on voltages, logic states and parts, this book is also a training course to give Commodore 128 owners the information that, added to programming skills, will give you the missing hardware point of view that will enable you to gain complete mastery over your computer.

In order to be able to figure out and repair a circuit failure in your C128, first of all you must be able to picture in your mind how the circuit is working. Tried and true electronic service pathways that have been developed over the years are useful. By following these methods, and using your natural puzzle-solving abilities, you will be able to pinpoint defective components or connections. Once the trouble is located-the most trying part of a repair job-then the rest of the chore is either replacing the part or repairing the connection.

The starting point of any repair is to carefully analyze the symptoms of trouble. One symptom is the computer nol beng able to display all the keys on the lseyboard. A number of others exist. In Chap-
ter 1, all the common symptoms are discussed. An analysis of each symptom points to a circuit area that could possibly contain the source of the trouble. In each circuit, there are primary suspects that should be examined first. However, in order to get to the circuits, you must be able to take the C128 apart. It is not difficult, and Chapter 2 goes into the details; it's all about knowing where the screws are.

You must use the right tools for the disassembly. Dismantling and reassembling must be performed correctly, and with care, to avoid mishaps. You are working with tiny items, and each move musi be made slowly and then it must be checked. A wrong move could cause "induced" troubles that will complicate things.

Chapter 3 contains the most used piece of service information: the chip location guide-the main printboard layout of the 63 chips in the computer. plus other prominent landmarks. The guide lets you relate all the information you leam to the location of any chip you might want to examine on the board, and is used over and over again on every repair job. Its use results in many repairs without any other service information.

Chapter 4 provides the mechanical and electronic techniques that must be used if and when chips have to be replaced. The tools and thinking that go into the ticldish job of changing an integrated circuil chip is reviewed. Changing a chip is not like chang. ing a vacuum tube, and is similar to, but much more exacting than, changing a transistor. These four chapters will teach you how to quickly repair at least 50 percent of C 128 failures.

Chapters 5 through 8 introduce you, with more intimacy than previous chapters did, to the chips in your machine. Starting in Chapter 6, you'll find the first of the test point charts that make it a simple matter to quickly check out every chip in the computer. Each chart is the top view of a chip showing the exact pinout. The name of each pin is given and. where practical, a sketch of the chip's insides is alse) shown. Arrows show the direction of the sigrial flow. Attached to each arrow is the actual reading you should receive if you probe the test point with a logic probe or vom (voltohm-milliammeter).

The readings were made on a computer that was first turned on in C128 mode, 40 -column, with the READY sign on the screen and with the cursor blinking. When you read your chips, the logic state of each test point should match up with the charts. If all the pins on the chip read correctly, thes that chip is deemed okay. Should one or more readings on a chip be incorrect. then this is a symptom of trouble and bears further investigation.

Actually, what you are doing is checking the input and output status of the chips. The inputs and outputs are clearly shown by the arrows. If all signals are being input properly but are not outputting correctly, chances are that the chip's internal circuits are not passing the signals. That would indicate a bad chip. On the other hand, if an input signal is incorrect, odds are that the chip is okay but that the circuit feeding the chip is not getting a signal to the pin. That circuit or bus line could have a short or an open condition. The test point charts are your entree to quickly getting repairs underway and locating troubles.

Chapters 5 through 24 comprise a servicing manual and a technical reference manual written on a technician's level. There are discussions of each chip with considerable detail, and even some timing diagrams for the chips that require them. You will gain mastery over your C128 by gradually absorbing the material. You might find that your programming skills will also improve as you gradually realize what is actually happening to the 1 's and 0 's as they flash around the digital circuits.

This book ends up with a master schematic of the C128. The schematic is needed during a difficult repair after the circuit area containing the trouble has been located and the wiring details are needed to pinpoint the prome suspects. The schematic contains all the part numbers. These same part numbers are found printed clearly on the print-
board. For example, a U6 is found printed on the board next to the 8502 MPU. The schematic reads U6 as the part number for the 8502. All the transistors, capacitors, etc. are identified in the same way. With the chip location guide, the test point charts, the theoretical discussions of the circuits, and the master schematic, you should be able to cover all the information required for the troubleshooting and repair of your computer.

Chapters 10 and 11 are a short course in logic gates and digital registers with specific reference to the gates and registers in the C128. The way the machine uses bunary, bexadecimal and decimal is included too. This knowledge enables you to work out BASIC PEEK and POKE routines to signal trace circuits that the 8502 MPU is able to address. The C128 also has a machine language monitor that can also be used for signal tracing with its commands. The ability to convert from decimal to binary to hex and back should be one of the tools of your servicing repertoire.

To be able to make the casy repairs on your C128 really pays off. The easy repairs are at least half of the total repairs. While your C128 is suill in warranty, there is no problem-Commodore is very accommodating. However, once the warranty period is over, the complication begins. If the machine fails. you must take it to a repair station. This often takes some weeks, and the machine can be returned with a healthy repair bill. If, on the other hand, you are able to do the troubleshooting and repair yourself. then the savings in time and money become quite worthwhile-besides the feeling of accomplishment you get when you fix your machine. If, during the life of your machine, you happen to get one repair from this book, the savings will more than pay for the price of the book. Then, of course, there is the knowledge you'll gain from the experience.

1. C128 Briefing Session

TThe unusual thing about troubleshooting a C128 in comparison to trying to fix most other computers is that the C128 case contains a form of Siamese triplets. Three complete computer systems are in the one case. The three computers are joined together at their inputs, outputs, MPLIs (MicroProcessing Units), and memory. They also share many of the other circuits. They cannot be physically separated from each other.

The triplet feature of the C128, as might be imagined, can complicate and confuse the situation when trouble strikes. However, if you are properly briefed and are aware of the three-in-one computer feature, as shown in Fig. 1-1, then symptom analysis can be accomplished without difficulty, and that is what this book is all about. It covers the three computers in the C 128 case from a troubleshooting print of view.

THE SYMPTOM DEVICES

The input and output devices of your computer are diagnostic tools. The mosi valuable of them is
the TV display. Most computer troubles show up on the TV display. In many cases, you can look at what is happening, or not happening, in the dispiay and be directed to the circuits that are in trouble.

Other inpust or output devices that could also aid in interpreting symptoms are: the printer, the disk drive, the cassette, the keyboard, the modem, a cartridge, the joysticks, etc. When these devices "act up." you have to decide whether the computer is at fault or the device is bad. The decision is easy if you substitute a device that is known to be good for the one exhibiting the symptom. If the new one works properly, then the old one is defective. If the trouble persists, the finger of guilt points to the computer circuits. Table 1-1 is a trouble chart that indicates the computer circuit that could be the problem when peripherals stop operating, but are proven to be good. These input and output devices are excellent symptom indicators. However, as mentioned, the TV display reveals the most symptom information. The symptorns that displays show become classics, have names of their own, and contain valuable

Fig. 1.1. Troubleshooting the C128 can become contusing because there aro three separate computers joined logether like Siamese triplets.

Iroubleshooting information when interpreted properly. Let's go through them one by one.

The Items in a Normal Display

Before you can spot trouble in a display you must know what the display should look like when
there isn't any trouble. Table 1-2 show's the five possible types of display devices you might be using. They are (1) your home TV, (2) a monitor that displays a composite color TV signal, (3) a monutor that needs an KGBI sigmal, (4) a monuchrone moniter. (5) a direat montor.

Table 1-1. When a peripiseral won't work
bocmuse of computer trouble, these chips are the prime suspects.

Symptom	Possible Defect in C128	Try
Disk won't wark	CIA2	Replacing chip
Panier slops	CIA1/CIA2	Replacing chip
Keyboard won't work	CIAyl or Keyboard	Replace chip or repair or replace keyboard
Modem not operating	CIAIICIA?	Replacing chips
Loses audio 40-column display	SID	Replacing chip
loses video	VICIRF Modulator	Replace VIC or replace or repair RF Mod box
80-column display	8563/74LS244/44 $\mathbf{1 6}^{\prime} 5$	
Cannidges	8563/74LS244/4416's	Replacting chips
won't work	CIA2MMUIPLA	Replacing chips
won't work	CIA 1	Replacing chip
Casselte won'l work	8502/CIA1/7406.U30	Replace chups or transistor

Table 1-2. The C128 outputs five different signal types from fits two wideo output circuits. One type of signal is for each of five differeni kinds of monitors.

Avallable Modes	Output Circuits	Display Oevice
$\begin{gathered} \text { Ci28 } \\ 40 \text {-column } \end{gathered}$	RF Modulator 8564 VIC	Home TV Composite Monitor Direct Monitor
$\begin{gathered} \mathrm{C} 128 \\ \text { 80-column } \end{gathered}$	8563 Video Controlter	RGBI Monitor Monochrome Monitor
$\mathrm{C}_{\text {40-column }}^{\text {C64 }}$	RF Modulator 8564 VIC	Home TV Composito Monitor Direct Monitor
$\begin{gathered} \text { CP/M } \\ 40 \text {-column } \end{gathered}$	RF Modulator 8564 VIC	Home TV Composite Monitor Dreci Monitor
CPM 80-culumn	8563 Video Controller	RGBI Monitor Monochrome Monitor

Because most people use their home TV, I't use it as the example. In general though, the discussion covers all five types. The differences are covered in detail in Chapters 20 and 21.

The C64 mode of the C128 is built to come on as shown in Fig. 1-2. Item number 1 in the picture is a light blue border. Item number 2 is a dark blue display block. Item number 3 is a sign-on message
ending with READY. Item number 4 is the blinking cursor. These signals emerge from the RF socket. in the back of your C128, passing through the cable and entering the TV via the Computer/TV switchbox, into the VHF antenna terminals of the TV.

There is one more signal from the C128 that is not displayed. The above four signals are packaged up in a TV frequency set for either Channel 3

Fig. 1-2. In C64 mode the display nomally comes on with a light blue border, a dark blue display block, light blue characters, a READY prompt and ablinkung cursor.
or 4 . The Items are modulated in these TV channel frequencies and are then demodulated in the TV so that they may be displayed on the screen. The modulation-demodulation process degrades the signals slighlly. That is why the monitors are preferred over a home TV display. For monitors, the signal items are sent directly to the monitors through the composite video socket or the RGBI socket without having to go through the modulationdemodulation in the RF Modulator circuits. The home TV is quite satisfactory and handy.

When you turn on your C128, you should see with the $40 / 80$ key in the up position, and in C128 mode, a black block, a green border. green lettering and a cursor. If anything is missing, then you are experiencing trouble. Incidentally, if the block and the border show, but the lettering and cursor are missing. then the first thing you should do is check the $40 / 80$ key. It should be in the up position. If it is depressed, it could cause the lettering and cursor to be missing on your home TV screen.

When the $40 / 80$ key is up, the signal is coming out of the RF socket and shows all four Items on the display. However, when the $40 / 80 \mathrm{key}$ is depressed, the signal is switched around and the four Items appear out of the RGBI socket. The RF socket only puts out the display block and the border.

The Dead Computer

The most common problem with the C128 is a complete loss of power. When this happens, the TV display shows a blank screen. If the display is a home TV, then the picture will appear as if there isn't any antenna attached. Most TVs at that time will show a screenful of snow, or some snowy distant channel as shown in Fig. 1-3. When you flip the C128 off-om switch, nothing shows on the display. The red pilot light might or might not go on.

You must make the obvious service moves first. Check to be certain that the computer box is plugged properly into the wall socket on one side, and the computer on the other, as seen in Fig. 1-4. If the plugs are okay, then feel the casing of the power box. Is it slightly warm? If it is, then the box is prob-

Fig. 1-3. When your home TV or montor comes on as usual but your C128 won't display anything. your computer is playing dead.

Fig. 1.4. The tirst ubvinus step to take whan the C128 is playng dead is to make sure that the powor box is plugged into the wall sockot and into the side of the computer.
ably okay. If it is stone cold, then it could be the troublemaker. Trying a new one will prove the point. If a new one fires up the computer, then the old one is bad. Should the new one not work either, then the old one is probably fine.

Once you complete these quick checks and the computer is still dead, your next step is to turn to Chapter 24. There you will find the next troubleshooting steps. You'll need to take some ac and dc voltage readings, and probably disassemble the power box and the C128.

Garbage Display

The next most common symptom is loosely known as "garbage." It is generally thought of as a screenful of meaningless numbers, letters, symbols, white spaces and black spaces as shown in Fig. 1-5. The trouble could happen during start up. The display fills up with garbage instead of the normal sign-on with the READY prompt. The garbage could contain a flashing cursor, or the cursor could also be missing. Other times the garbage could suddenly appear while you are computing. Your program crashes and the computer locks up.

The reason why garbage appears on the screen, instead of the normal sign-on picture, is because the microprocessor is out of control-it is running wild. Normally the processor conducts its duties under

Fig. 1-5. When the display lills up with GARBAGE instead of the READY sign-on message and the blinking cursor, the trouble is hidden somewhere in the digital circuits of the computer.
the careful control of the C128's operating system in the ROM (Read-Only Memory) chips. When for some reason the operating system loses control, the processor simply goes mad, spewing addresses, data and control signals around the computing circuits without any rhyme or reason. The result is: the TV display fills up with nonsensical characters, numbers. symbols and spaces.

The garbage symptom does not pinpoint the trouble to a single circuit. The failure could happen in almost any of the digital circuit components or chips. Your approach therefore must be: first. locating the general circuit area of the trouble before you can zero in on a specific circuit; second, locating a component, connection or chip.

This procedure requires you to learn how the digital circuits are processing data from a hardware and voltage point of view, at the technician's level of understanding. Then you can intelligently make appropriate logic probe, voltage and scope readings to hunt down defects. Chapters 6 through 23 contain the information that will aid you in pinpointing the troublemaker.

Empty Display Block

The empty display block is the same symptom as what occurs when the $40 / 80$ key is accidentally depressed. As shown in Fig. 1-6, the border and dis-

Fig. 1.6. A vaniation of garbage is a display block that is blank. The border and empty block can be seen but no charactors appear. Striking the koyboard has no apparent effect.
play block are present but the block is completely empty. You can strike the keyboard but try as you may, nothing shows up-the block remains devoid of characters or symbuls.

When the display block is empty and the $40 / 80$ key is up. you have a circuit problem that results in another form of garbage. Here again the same circuits come under suspicion. The fault could be located anywhere in the digital circuits. It is a troubleshooter's job to take test readings and, from the results of the readings, deduce what circuit area is in trouble. Again, an understanding of Chapters 6 through 23 should clear up the maze of chips and printboard copper traces.

Chapters 6 through 23 contain troubleshooting techniques and theory of operations along with detailed test point charts showing voltage and logic states that are normally present on the test nodes when the READY sign appears. What you do is run voltage or logic probe tests, as described in Chapter 4. If you take some test readings and one or more of the test results do not match up with what is supposed to be at the connections, then you have found a clue that could lead to the fault.

No Color

The C128 is a color computer. Special circuits in the machine generate the colors that appear in the display. Should the C128 display a picture with good characters and symbols, except for the fact that the picture is missing coloring, then no color indicates trouble in the color circuits.

The color signal is onginated in the clock circuits. Chapter 17 covers the clock. The colors are
output for the 40 -column displays in the 8564 VIC chip. Chapter 20 explains the 8564 chip. The colors for the 80 -columa displays are output by the 8563 Video Controller chip. The discussion on the 8563 is in Chapter 21. When there is no color, turn to these chapters to find out how the color is generated and how it passes through the computer. Once you brief yourself on the color theory of operation. you can then figure out how the coloring is failing to appear and take the repair measures to restore color.

No Video, Sound Okay

This symptom is almost like the dead computer symptom except for one important difference: the sound from the computer is still emanating from the TV display. This means that the computer is fine, except for the video circuits. Because there are a number of different types of video outputs possible from the C128, you must make some simple isolation tests to determine which videos are missing and which ones are present. The possible video outputs you can obtain from the C128 are the following.

The RF output plug sends a composite TV signal contained in a TV Channel 3 or 4 envelope (see Fig. 1-7). A home TV can use this signal just as if it was coming from a TV station. This RF output has a 40 -column display only.

The Video output plug is tricky. It puts out two different type 40 -column signals. First of all, it outputs through pin 4 a composite TV signal without the TV Chansiel 3 or 4 modulation envelope (see Fig. 1-8). This signal can be displayed on a composite monitor TV. Secondly, the plug outputs another dual

Fig. 1.7 The AF Madulator outpul plug sends a 40 -column composite color TV signal on a Channel 3 or 4 Irequency. Il works fine an a home rV

COMPOSITE VIDEO PORT

Fie 1.8 The Composite Vidoo Pon sends out a number uf sigrals At pin 4 is a 40 -column composite color TV signat without Channet 3 or 4 modulation At pins 3 and 5 are audio ourput and inpul signals Pins t and 6 output separato 40-column LUMISYNC and CHPOMA.
signal. From pin 1 it emanates a Luminance/Sync signal. From pin 6 comes a Chroma signal. These two signals can be injected into a direct TV monitor to produce a display. There aren't too many of these monitors around except for the Commodore 1702 and perhaps a few others. However, the combination signals are available at the pins and can prove uscful during the testing of video signals. Any ordinary TV scope will show them nicely.

The RGBI plug is also not straightforward. it also outputs different signals (see Fig. 1-9). It puts out a normal 80 -column RGBI signal that can drive an RGBI Monitor. The RGBI signal exits through most of the nine pins of the RGBI plug. In addition. another separate 80 -column signal is output from pin 7 of the RGBI plug. It is an 80 -column Monochrome signal that can be used on an ordinary composite TV monitor. It is similar to the 40 -colums signal com-

RGBI VIDEO PORT

Fig 1.9 The RGBI Port outputs two soparate signal-types. From pin 7 emanates an Bo-column Monochrome Vrdeo. All the rest of the signals combined produce an 80-column RGBI signal with correct horizontal and verncal sync
ing out of pin 4 of the composite video plug-only this pin 7 output from the RGBI plug has 80 columans. The columns are different because the 40 -column output comes from the VIC 8564 chip and the 80 -column output comes from the 8563 video controller chip.

Table 1-2 shows the different outputs. The isolation test techniques are discussed in detail in Chap-
ters 20 and 21 . Chapter 20 covers the 40 -column outputs and Chapter 21 covers the 80 -column outputs.

No Sound

There are separate sound circuits in the C 128 . They are covered in Chapter 22. The sound circuits are mostly contained in the 6581 Sound Interface

Device, called SID. When sound troubles happen, they are usually related to that chip and its adjoining circuits.

SID, and the microprocessor it is operating with, form a bond between them. It's as if they are a small computer system of their own. This makes sound troubles relatively easy to test and handle. Sound testing is discussed in greater detail later in this chapter. For all the details though, turn to Chapter 22.

Peripheral Device Problems

As you know the C128 mode is the centerpiece of the computer system. Feeding into the C128 are the keyboard, disk drives, cassette, joysticks, paddles, light pens, inscription pads and so on. The computer processes these inputs and then outputs to the printers, disks, cassette, modem. TV display, etc.

As mentioned earlier, when a peripheral device stops operating normally and causes trouble, the first step is to substitute the troubled peripheral with one that is known to be good. If the trouble ceases and normal computing continues, then the trouble is in the peripheral. Repairing peripherals is a separate job and is covered in other books. However, when the new peripheral also won't work, then the trouble is in the C128.

When you decide that the C 128 is at fault, turn to Chapter 23, which discusses the inputs and outputs of the C128. There you will find the circuits and plugs that receive the inputs and send out the outputs. The chapter guides you to specific circuits, as found in Chapter 19. In Chapter 19 are discussions on the 6526 Complex Interface Adapter (CIA) chips. These two chips handle most of the $1 / 0$ (input/output) work that is required for all the peripherals except the ones that produce the video displays and the audio output.

DIAGNOSTIC PROGRAMMING

Once you get into this book, you'll progress through the following steps.
(1) You'll get an idea of what the printboard looks like as you take it apart with directions in Chapter 2.
(2) You will become familiar with the location of the chips as described in Chapter 3.
(3) Chapters 5 through 9 will give you a good idea of what the C128 is doing.
(4) You will be briefed enough to intelligently perform a lot of your own tests using PEEK and POKE in BASIC, or the machine language monitor commands: MEMORY and FILL (M and F), which perform the same jobs.

PEEK and POKE

Using the function PEEK and the statement POKE gives the C128 the opportunity to test itself and then tell you about it. It is an excellent self-test and works well as long as the C128 is not down completely. Should there be a power supply problem. or other major problem, then the computer obviously can't test itself. However, if the machine is operating somewhat, but is exhibiting glitches or other erratic behavior, thea you can often pinpoint the circuit and chip that is defective with these test techniques. If you have been doing any programming at all in BASIC, then you are well prepared to write a tiny test program, run it, and come to diagnostic conclusions.

PEEK allows you to read the contents of any of the locations in the C128 or C64 memory map. This includes all the ROMs as well as the RAM (Random Access Memory) chips, and includes addresses on the map that are in registers on large chips like VIC, SID, and the CIAs. As long as the location is on the map, you can read its decimal contents which in turn can be converted to hexadecimal and binary.

POKE permits you to load a byte or bits into all of the memory addresses, with the exception of the read-only locations (ROM). POKE gives you the ability to run test data back and forth between the processor and the residents of the memory map.

Two ways might be used to get the PEEK and POKE tests to operate. First, you can use them directly without program numbers. Simply type in the desired program line, then press RETURN. If the line orders a PEEK, then the addressed location will yield its contents and PRINT on the display the decimal number equal to the binary contents of the location. Should the line command a POKE, then the binary equivalent of the decimal number you put
in the line will be put in the location addressed by the line. It's really easy because PEEK is, in real ity, "read" operation and POKE is actually a "write." In the direct mode (e.g. LIST or RUN) these operations are performed without further ado.

Otherwise, you could write a tiny test program with numbered lines. You could, for example, write to some locations, install numbers in the locations with POKEs, and then read those locations with PEEKs. Another common test program could POKE numbers into registers to see if the registers are performing. When you POKE registers on a chip. it is exactly like working the switches of a control board of the chip.

When you use POKE and PEEK as a signal injector and location tester in the Cl 28 , the only tricky
part is havug a clear idea of the relationship between decimal numbers and the set of bits in a byte that the decimal numbers represent. When you POKE a number into memory, you type a number that is code for a particular set of digital bits. As you PEEK a memory location, a decimal number is retumed to you and is PRINTed on the screen. The decimal number is the code for the set of eight bits that are contained in the register you have just read.

For example, if you are in the C64 mode, then you could desire, for troubleshooting reasons, to learn what the contents of address number 209 are. It's easy. Simply type in: PRINT PEEK (209). As seen in Fig. 1-10, the answer 36 is PRINTed on the display below your command line. This 36 is decimal for the binary bits 00100100 . The bits could also

Fig 1-10 A quick-check of a chip is to read the coments of one of is registers. In this test. Ram register 209 in C64 mode is read with a PEEK. When decimal number 36 is returned, the register is considered okay.
be called LLHLLHLL. The programmer usually thinks of the bits as 1 's and 0 's, while the electronic troubleshooter sees the bits as H's and L's (Highs and Lows). Anyway, the PEEK function can easily read the contents of location 209 whike the Cl 28 is used as a C64. A programmer might need the binary arrangement to switch data around in the program. A troubleshooter could use the information to compare the actual contents of 209 to what is supposed to be in 209 at that time. If the correct bits are present, then the location is considered okay. Should the bits be missing or incorrect, then that is a clue that could lead to the pinpointing of a fault.

Another example of using these techniques also refers to the C128 acting as a C64. Suppose that you want to quick-check the operation of the color RAM chip. A fast test could be a change of border color on the display. Location 53280 controls the color of the border. It so happens that if you write the decimal number 8 to that location, the border will change to orange-if the chip is okay. You can enter POKE 53280.8 onto the keyboard. As you hit RETURN, the TV picture border should change from light blue to orange. If it dues, then the quickcheck infers that the color RAM chip is okay. Should the POKE produce no effect, or the wrong effect. then the chip or its associated circuits are indicated to be in trouble. This is only a quick-check. The inference is that if the chip responds well to one sure lest then odds are good that the chip is okay. There is always the possibility that there could be some other subtle form of trouble that the test is not revealing. However, when a test like this is made and works out okay, chances are very good that the entire chip is okay.

The 53280 is the decimal address of the color RAM register. The decimal eight is a set of bits, called 00001000 or LLLLLHLLLL. The color RAM uses the four lowest bits, HLLL, to switch the border color to orange.

PEEK and POKE can be used as a location tester or signal injector. BASIC is used in both the C128 and C64 modes. It is not used in the CP/M mode. These easy tests are not readily available in CP / M as they are in BASIC. CP/M and BASIC are not permitted to run at the same time.

When in C128 or C64 mode you'll find that the PEEK function and the POKE statements can be used over the entire 128 K RAM that the C128 uses, and the full 64 K RAM that the C64 has privy to. In addition, POKE and PEEK can be applied to the various static RAM chips, the ROMs, the I/O chips as well as the addresses on the video and sound chips. You should consider the locations on the memory map as bit holders and the decimal data you read out of the locations and write to the locations as code for the bils. There will be more on these techniques as you go through the book.

Diagnostic Programs

Besides reading and writing to individual addresses with PEEK and POKE directly, you can. once you acquire a troubleshnoting point of view. also write programs that perform batteries of tests and check out large portions of the memory map. One useful diagnostic programming technique is to place PEEK and POKE in loops. A POKE in a loop can make the C128 able to write to a large group of memory locations automatically, one after the other. A PEEK in a loop could have the C128 read many memory locations and print the results in decimal on the screen.

For example, a diagnostic program could be used to test the ability of memory locations to contain data, while at the same time checking out bus lines for continuity. Yous would first write program lines that POKE data into locations. Then you write PEEKs to check and see whether the POKEs ever arrived and were installed okay. If all the locations you wrote to are holding the data securely, then they and the bus lines connected to them are considered okay. Should some or all of the data not have reached their destinations, you can then trace out the path they were to have taken. Some sort of problem stopped the data flow. You have diagnosed a suspect circuit area with your test program. There will be more on these techniques in Chapters 14. 15, 16 and 18.

In addition to writing your own test programs. there are diagnostic programs available. Check with your local software store for the names of ones that are for sale. For example, there is one diagnostic
that has been around quite awhile for the C64. You can use it for the C128 when it is in the C64 mode. It is called " 64 Doctor." It is manufactured by:

Computer Software Associates
50 Teed Dr.
Randolph, MA 02.368

Commercial diagnostics are normally fancier than the ones you will produce-they are prettied up with graphics. Once you load the diagnostic into the machine, then a menu pops up. One option checks out the disk system and the C64 mode's internal RAM. It is limited in that it can only test 64 K of the 128 K in your machine. Next, there are tests for the keyboard, a printer (if it is connected), a cassette (if it is connected) and joysticks. Another test runs patterns to check out your color TV or monilor. Lastly, the program makes the SID chip perform some music.

This diagnostic also works out the graphics on the C64 mode. It produces sprites that look like a TV set, a printer and so on. The sprites march around the display.

For troubleshontung, a program like this has use but is limited. First of all, if the computer is down completely, then it can't run any program, including the diagnostic. However, the program can sometimes decide whether a peripheral problem is located in the peripheral itself, or if the computer circuits are not performing properly. Should you be unable to substitute a penipheral that is known to be good for a suspect peripheral, as a test, this program could help.

While these programs are fun and occasionally useful during troubleshooting, they can be valuable before you begin a programming session. Should you be planning a long program, it is a good idea to exercise the C128 everyday before you put program lines into the machine. If the machine exercises okay, then it is safe to work on. It is very frustrating to spend hours programming, and then discover there is some: faulf with the computer.

PRINTBOARD LANDMARKS

A C128 user is mostly concemed with software and applications. However, when trouble strikes.
that focus must be changed. You must switch your view from the software to the hardware that is running the software. The next chapter describes how to open up the C128 and get the printboard out in the open. Once the printboard is exposed, you will see a complex maze of chips, capacitors, resistors, foil comnecting lines and many other items. In order to make any sense out of the layout, you have to find out what all those components and connections are. The place to start is with the landmarks. Once you recognize them, you'll start to get to know your way around.

The main landmarks are the large chips, the group of ROMs, and the collection of 16 RAMs. A close look reveals the data and address buses coursing over the board. Figure 1-11 depicts the nine large chips, the locations of the ROMs, and the RAMs.

Figure 9-1 is a block diagram of how these chips are connected electronically, and the directions that the data takes. The data flows over the system data bus. The data enters the circuits via the keyboard into a CIA, and passes onto one of the MPUs. The MPU then reads the ROMs, reads and writes to the RAMs, and then outputs to one of the video chips, a second CLA and to SID. The video chips in turn output to the display and SID outputs to a sound system.

Figure 1-12 shows how the address bus performs, and how the chips are involved. The addressing emanates from the MPUs. They send the address signals to the PLAA (Programmable Logic Array) and the MMU (Memory Management Unit). These two chips then form the various addresses and they are able to contact all the residents of the memory map. When a memory location is addressed by this system, then data can be sent to its bit holders.

Complex Interface Adapters

The two CIAs, U1 and U4, are physically located on the two sides of the printboard. U1 is found in the lower right-hand corner and U4 is on the edge of the left side just above the center of the board. Both chips are plugged into 40 -pin sockets. They are both numbered 6526 and are called CIAs for Complex Interface Adapters. The right side one is

Fig 1.11. When the Ci28 is opened the landmarks of the printooard can be seen. The landmarks are the large chips, the RAM and ROM sets, the

Fig 1-12 The 16 lines of the addreasing system ongunate in the MPU. They are named AO through A15. The lines go 10 all the residents of the memory map. The 16 tines are able to address 65,536 indivicual register locations.
wired 10 a plug that the keyboard is connected to. This is the keyboard's port of entry.

The right side CIA, called "CIAl" on the schematic, besides letting the keyboard pulses in. also is the port of entry for the two input plugs the joysticks and other penipherals use. When a key is struck or a joystick is moved, the electronic signal generated enters U1, the CIA1. The signal is processed by CLA1 and is then output to the eight parallel copper traces called the "System Data Bus." The data bus then acts as the pathway for the signals to connect up to the microprocessor further down the board.

U4, called "CIA2," on the left side of the board, is the port of entry for sipnals entering or leaving the User Port and the Serial Socket. CIA2 performs in the same manner as CIA1.

When I/O troubles crop up, an easy analysis can clue you into the circuit area that could possibly be containing the fault. This is shown in Table 1-1. For instance, troubles with keyboard or control port inputs could be originating in U1, the CIA1. Problems with the input or output of the User Port or the Serial Port could be a CIA2 circuit flaw. Chapter 23 goes into details on this $1 / 0$ subject.

The Microprocessors

There are two microprocessors in the C 128. The main processor is U6, an 8502. It is an upgrade of the 6510 processor found in the C64, which in turn is an upgrade of the 6502 that resided in the VIC 20 computer. All three processors use the same Instruction Set.

The 8502 sits in the lower right quadrant of the printboard. It is in the center of the circuit. It is the originator of the data bus and the address bus. It does not have addresses on the memory map. It can be likened to a central telephone exchange-the locations on the memory map are the telephone numbers that the exchange services. The CIAs have addresses, and when the 8502 dials them up they respond over the data bus. While the address bus is only one-way from the 8502 to the addressed location, the data bus is two-way and can be read from, or written to, by the 8502 .

The 8502 is used when you pur the C128 into the C128 or C64 modes. Besides connecting to the CLAs, the data bus from the 8502 hooks up to all the rest of the memory map locations. This is discussed in detail in Chapter 18.

U10. the 280 microprocessor, is called the "Coprocessor." It is a full-fledged processor on its own. But since the 85012 handles the C 128 and C64 chores, the $\mathbf{Z 8 0}$ is given a subservient role. The $\mathbf{Z 8 0}$ conducts the CP/M activities of the machine. It is located on the bourd, next to the 8502 , on the right Both processors have 40 pins. However, the $850{ }^{\circ}$ is plugged into chip sockets but the $\mathbf{Z} 80$ is not. The Z80 is soldered directly to the printboard.

The two processors work independently of each other. When the 8502 is operating, the $\mathbf{Z 8 0}$ is disabled and sits quietly. As the $\mathbf{7 8 0}$ takes over for the CP / M operations, the 8502 is turned off and just waits idly by. With the two separate processors, the C128 total machine thus becomes a form of Siamese twin. The twins are joined at the 1/Os and memory, Furthermore, since the 8502 is conducting both C128 and C64 operations separately from each other, a third machine is present making the C128 package Siamese triplets.

When trouble strikes a processor, the function it is executing will fail. If the 8502 gets sick or dies, the C128 and C64 operations will be the ones to suffer. When the 280 passes away, the CP/M operations won't work. The 8502 and its problems are covered in Chapter 12. The 280 processor is discussed in Chapter 13. There is more about both of them in Chapter 5.

The Addressing Management Chips

When one of the processors dials up an address, all of the bits do not travel directly to the desired location. Some of them are routed to two substation chips. They are U11, the 8721 PLA and U7. the 8722 MMU. The PLA. U11, is a 48 -pin chip and is soldered at center bottom of the printboard. The MMU, U7, is also a 48-pin chip and is located in a socket on the right-hand side of the board about halfway down. The Pl.A is covered in detail in Chapter 14. PLA stands for Programmed Logic Array. The

MMU is discussed in Chapter 15. M.MU is short for Memory Management Unit.

The two large chips work together to keep the addressing straight. With two processors, five various operating modes, two separate type video output chips, 128 K of memory in two 64 K banks and many other complications, these chips have their registers full.

When trouble strikes in these chips or their circuits, the main symptom is bad addressing, which can result in garbage or other related symptoms.

The Video Output Chips

In the upper left quadrant, near the center of the printbuard is a metal shielded enclosure. Inside the enclosure, on the right, is a 48 -pin VIC chip soldered to the board. It is U221 and named the 8564. It is an upgrade of the VIC chip found in the C64. VIC stands for Video Interface Chip.

On the left-hand side of the enclosure is another 48 -pin chip plugged into a socket on the board. It is U22, the 8563. It is the Video Controller.

These two chips are quite complex and are sometimes referred to as microprocessors. They can do almost the same job as a processor. VIC chips can be used in video game machines as a processor and also as an 1/0 chip.

The VIC 8564 is the subject of Chapter 20 while the 8563 video chip details are in Chapter 21. These two chips do not work together. Like the 8502 and the 780, when one is on the other one is off. The VIC chip is used exclusively for all 40 -column operations. This includes the C12840-column mode, the C64 40 -column mode and the CP/M 40 -column mode. The 8563 Video Controller is used exclusively for all 80-column operations. This includes the C128 80 -column mode and the CP/M 80 -column mode. The C64 does not have an 80 -column mode.

The VIC 8564 outputs directly to both the RF Modulator box at the top of the printboard and to the Composite TV Video plug to the right of the RF Modulator box. These are the exclusive 40 -column outputs. The 8563 video controller chip outputs to the RGBI output plug only. This plug puts out only 80-column video signals.

The Sound Interiace Device

Sitting in a socket to the right of the board's center, in the top half of the board, is SIO , the 6581 audio producer. SID is only a 28 -pin chip and has little to do with any of the circuits except for the microprocessors. SII) takes care of all the sound requirements of the C128. It is connected to address and data bus lines. SII) is covered in detail in Chapter 22. When sound troubles occur. SID is the prime suspect.

SII) outputs its audio to both the RF Modulator and to a couple of pins on the Composite Video plug. The RF Modulator has audio from SID sent into its audio input plug. The Composite Video connector devotes two pins to audio. Pin 3 handles the audio output from SID. However, pin 5 takes care of any audio input that comes from an external device. The outside audio is then sent to SID where it can enter the chip and be processed according to SID's dictates.

AN OVERVIEW OF TROUBLE ANALYSIS

When trouble occurs with your C128 system, the first step, as discussed earlier in this chapter. is to determine whether the trouble is in the computer or in a peripheral. When the trouble is in a peripheral, you have the peripheral fixed. Should the trouble be in the C128 itself, then this book applies.

Figure 1-13 is a flow chart that could help you decide the general circuit area on which you should focus. Before you start on the tlow chart, if the computer appears dead and the indicator light is out. go no further-the trouble is in the power supply. Chapter 24 contains the service information for that condition.

Should the light be on, then the dow chart can begin. Start by analyzing the symptom. The purpose of the analysis is to decide on what service approach to take. For example, if the usual sign on display is completely gone, and you know the TV is okay. then the computer is not putting out any video signal in that mode. What you must do is figure out if all of the computer signal is gone, or just the video.

A quick test could be to write a test program 10 SID and determine if SID is outputting. There is

Fig 1-13 When irouble strikes, a good starting procedure will save you from wasting time Thrs is an example of the way to go from symplom to pinpointing the delect.
a small PEEK and POKE program in Chapter 22 that will do this. If SID remains quiet, then there isn't any computer output, sound or video. This indicates power supply trouble even though the indicator light is on. Chapter 24 has the test procedures.

On the other hand. if SID does start making lest tones then the computer is putting out some signals. By the process of elimination, the video circuits are the prime suspects. Look over the video chapters. 20 and 21.

The other general symptom is: some sort of display, but not a useful one. There could be garbage on the screen, an empty display block, a display that has locked up and won't respond to keyboard
strikes, or just erratic operations. You could, in those cases: try the resel button; tum the computer off and on; depress the RUN/STOP and RESTORE keys at the same time. If these measures do not cure the problem, then examine the READY prompt and the cursor. Are they present and is the cursor flashing? If so, you might be able to use PEEK and POKE tests or a diagnostic program you have.

When the READY prompt and the cursor are disabled, then you probably can't get the computer to cure itself. At that point you must resort to the various logic probe, vom and scope tests as described in the book.

2. Disassembly

WThen a C128 gives up the ghost and you make a decision to repair it, then most of the time you must lake it apart. The first time you start taking out the screws, you are sure to be hesitant. You know from past experience with many other repair jobs that you could just possibly cause some additional troubles by simply taking it apart. You don't want to start a repair job by causing trouble.

Fortunately, the C128 is assembled in a sensible manner, which makes the disassembly relatively easy, although extreme care and slow moves are the order of the day. The first steps are common sense. Arrange a large enough place for your work. Gather your tools together. Be sure to have good lighting and place a rubber mat on the bench. Disconnect all the attachments to the C128. Place it on the soft mat. Figure 2-1 illustrates progress to that point.

It is a good idea to have the bench area as clean as possible. Dirt and flings that accidentally get into the computer could end up as additional troubles. It is not a good idea to work on the C128 in a low humidity environment. Should it be cold outside but
warm and dry inside, with static sparks flying and popping as you walk on the carpet, be extra careful while working on the computer. Static electricity could be death to computer chips. There will be more about the static electricity precautions in Chapter 4.

GETTING THE HOOD UP

The C128 is put together as a sandwich. The top slice holds the keyboard, the bottom slice holds the printboard, and the components are connected to the printboard. The first thing to do is take the C128, turn it upside down and place it on the soft pad, keyboard on the bottom. Then check the screws. There are six of them. They are located as shown on Fig. 2-2.

The six screws on my model are tiny little jeweler's types with a number 10 Torx hole instead of a screwdriver slot. You should have the correct form of driver to remove the screws. I purchased my number 10 Tonx screwdriver at Sears for $\$ 3.99$ plus tax. With the correct screwdriver, the little ones

Fig. 2-1. To disassemble the C128, you nood a number 10 Tonx screwdriver, a Phillips head screwrriver, long nose pliers and a low-wallage soldering iron For the reassembly, a tube of heat-iransterring silicone paste should also be used. The logic probe, chip stranghtener-inserter and small cutters are also useful during troubleshooting.
come right out, as in Fig. 2-3. If you should not have the Torx driver, you'll have a hard time removing the screws.

Once the six screws are out, then place them all together in a safe place so that they will all be available for replacement. Grasp the C128 so that
it doesn't open and turn it back so that the keyboard is on top once again, then try to pry the top away from the baltom.

The case is plastic and the top edge is seated in little holders. Sometimes the edges get wedged in the holders and it appears difficutt to separate the

Fig. 2-2. On the bottom of the C128 are six Torx screws located at these spots
top of the case from the bottom. Be persistent and keep prying, gingerly. The top will dislodge itself and separate after some prying.

Once you separate the top and bottom, then lift the left side up first. The power indicator is on the left side. A three wire socket on the printboard holds the indicator three wire plug. Disconnect the plug. as in Fig. 2-4. Raise the top of the case and the top will swing up from left to right. The reason that the top will not come straight up is another number 10 Torx screw, seen in Fig. 2-5, on the lower right side of the printboard that is holding a ground strap conrected to the keyboard. Then you will see that the keyboard is plugged into a 25 -pin socket on the main board. Unplug the keyboard, as in Fig. 2-6, and the top of the case is free.

Uniess the keyboard itself has troubles, there is no reason to remove it from the lop casing. However, should you need to remove the keyboard from the top, it is easily taken off by removing six more number 10 Torx screws. The keyboard will then be free.

FREEING THE PRINTBOARD

Once the top is off, you'll be looking down at a metal shield that covers the entire printboard, top and bottom. The shield is ventilated with a lot of holes, but it covers the entire board. In order to do any testing or parts replacing on the main board, thus shield must come off.

The first step is to remove the seven number 10 Torx screws, in Fig. 2-7, that are securing the printboard-shield assembly to the bottom of the cabinet. The printboard and shield assembly will then lift right out of the cabinet bottom, as Fig. 2-8 shows. The next step is to separate the priniboard from the shield.

A close examination of Fig. 2-9 shows that the shield has eleven swist tabs hooking the lop and bottom parts of the shield together. The tabs are located on the front and sides of the shield. These tabs must all be straightened. Once the tabs are no longer holding the top and bottom of the sheld together. there is one last connection and one more screw. The connection is a solder spot next to a twist tab

Fig. 2-3. The six Torx screws are removed easily. Don't forget the hidden center screw above the nameplate
holding the shield to the printboard, as seen in Fig. $2-10$. It is located on the right side of the board. Atter you desolder that comnection, there is a Phillips head screw, shown in Fig. 2-11, located on the top of the shield right in front of the RF Modulator box. Once that screw is out, then the shield can be removed, top and bottom, as seen in Fig. 2-12.

Once the shielding is removed, then the printboard is revealed. You'll see 55 of the C128's inventory of 63 chips on the board. Some are plugged into sockets while others are soldered directly to the board without the convenience of sockets. If you need to change a chip in a socket, it is a ticklish job to make sure the pins are lined up properly, but the job shouldn't take more than a minute or two. Should you be unfortunate enough to have to replace a chip soldered to the board, you have a tedious soldering job ahead fraught with the danger of "inducing" additional problems. Chapter 4 details the techniques
required for replacing chips in sockets or soldered to the board.

In the top left quadrant is the RF Modulator box and the metal shield box containing video associated clips. The top of the viden box comes off, as shown in Fig. 2-13, and you'll see eight more chips. You'll find six small chips, U22 (the video controller) on the left and U21 (the VIC) on the right.

When you remove the shiclding, note that there is a heatsink that is designed to touch the shield on the VIC. The sink is covered with a white silicon paste to conduct the heat away from VIC. Should you disturb this heat connection be sure to apply fresh sticicon paste. You can obtain it in any electronic store, such as Radio Shack.

It is vital that, as you take apart the C128, you perform the disassembly in a slow and careful manner. Note the way it comes apart so you will be able to get it back together again without undue difficulty.

Fig. 2-4. Once the screws are out the top will distodge rtself Litt the left side and disconnect the LED prot hght plug

THE POWER SUPPLY BOX

Power supply troubles are among the most common in computers. If the computer is dead, then the first step is to check out the supply box. Chapter 24 goes into detail on the techniques required. If you find that the box is, indeed, the source of the trouble, then the next step is to try and disassemble the box. Sometimes this is an easy task and at other times is almost impossible. This is because there is
no one box that is found with all C128's. They all produce the same supply voltages for the C128, but with slightly different circuits and very different casings.

The last two boxes I encountered had two different casings. One was very heavy, which meant that it was probably potted (a heavy waxlike plastic was poured into the box to seal the circuits in place).

Fig 2-5. Another Torx screw holds the koyboard ground slrap to the main chassis.

Fig 2-6 the heytour: plugs into the main chassis with this 25 -pin plug it pulls oft easily When reniserting make saree the plug is seated snugly

Fig. 2-7. Seven more Tonx screws secure the printboardshield assembly to the bottom of the case.

In spite of the fact that it was potted, 1 attempted to pull it apart because the trouble was definitely in the box. There was one long bolt. Iremoved it and tried to pry the top from the bottom of the case. They were so stuck logether that the only way they would come apart was if I broke them apart. I opted to simply replace the power supply with a new one. It was the economical thing to do.

On the other hand, another box I worked on was easy. It was much lighter than the first one. The box was not potted. It had four long bolts as shown in Fig. 2-14. Once they were removed with a thin Phillips head screwdriver. then the top lifted right off.

Inside the box is a small printboard and some other circuits, as shown in Fig. 2-15. There are also two small fuses in fuse clips. Replacing a bad fuse might be a quick repair. In addition a power transformer, some diodes, filter capacitors, transistors and one integrated chip are in the box. Chapter 24
details the circuit and the troubleshooting methods needed to fix troubles.

VISUAL REPAIRS

After you disassemble the C 128 , then you are afforded an excellent easy kind of repair that can produce a repair in a small percentage of cases: some troubles can be seen and promptly remedied. One such kind of trouble is accidentally installed in the computer during manufacturing. After the printbaard is assembled, then it is soldered with automatic machinery. During the soldering process, the machinery generates hot gases that car expand rapidly and shoot hot liquid solder into the air. As the solder cools and falls, it hardens. The solder then drizzles down and some of it could find its way onto a newly assembled printboard. The drizzle contains solder flux which can act as plue. Where the solder falls it sticks.

Of course, the factory knows all about this, and the board goes through extensive cleaning in the final stages. However, as hard as they try, an occasional sliver of solder will stick in a place where it frustrates removal, as shown in Fig. 2-16. Also, it does not cause any problems at that time, so it sneaks through quality control, and is shipped out with the finished computer.

The computer and solder sliver travels many miles and is handled by a lot of people and machinery. It finally ends up on a users desk. During the next few months as the computer is used the sliver jiggles around and then manages to lodge between some copper etch lines of the address bus. When the computer is then "fired up," then instead of a normal sign-on picture, a screenful of garbage results. The computer needs service.

If you decide to check it out yourself, then the first thing you do is take it apart. Once the printboard is freed from its shielding, then the next step is a close visual inspection under a good light. If you are alent, then you would sight the sliver of solder and remove it. It could be that the computer is fixed. As you turned it on, the normal sign-on message will appear. All you have to do then is put it back together.

Fig 2-8 The printboard and shied assembly will lift away from the bottom of the case atter removing its restraints. Somefimes it is a very snug fit and will require some carelul prying to free it

While solder sliver troubles do happen on occasion, most of the time you are not so lucky. There are, however, a few other visual service moves that are easy to make and that often do produce good results. The only pieces of test equipment you need are a bright light and a good magnifying glass. You will be looking for short circuits, open circuits, and burnt or mangled components.

Long Lead Shorts

One common type of short circuit happens when a component's lead, sticking out of the bottom of the board, is left too long and manages to touch an-
other part of the board or the shield as shown in Fig. 2-17. The computer is put together in layers. The cabinel is at the very bottom with the shielding sitting on the bottom. The shield acts as a common ground for the entire printboard as well as a shield to ward off and absorb electrical interference that might come through to the C128.

A short of the long lead occurs when one of the printboard's active connections manages to contact other active connections or the ground. You can often spot long leads that are producing a short circuit and snip off the excess or bend them clear of the shorting spot.

Fig. 2-9 Some 11 twist tabs must be straightened to loosen the top sheld from the bottom.

Board Defects

There are thousands of connections, long lengths of copper etch lines, etc. on the printboard. Sometumes a socket or chip pin can become bent under, instead of properly soldered into its board hole. If could also sneak by inspection because it works okay-the socket is otherwise firmly attached and the bent-over pin makes a pressure contact. However, in about a year, some corrosion builds up on the pin and the pressure contact no longer holds. Erratic performance develops leading to a permanent disability.

This type of trouble can be seen with the bright light and magnifying glass. Once you locate it, you can gingerly move the pin into its appointed hole and apply a tiny drop of solder with a small soldering iron.

Other types of board defects can also be found visually. The address bus, the data bus, and the
other bus lines are copper etch lines on the printboard that travel over much of the board. These bus lines must be continuous. There cannot be any breaks or touching between lines. If you find a break or a place where they are touching, then you have located an open or a short. Figure 2-16 shows both problems. Either way, you have trouble. Chapter 18 covers all these bus lines in detail. It is a good practice to examine all the bus lines carefully before each repair. You could just be lucky enough to find a solder sliver or a break and have a quick fix by removing the short, or resoldering the break.

Blackening

Another item of repair importance is blackening. Look carefully at the board for blackened components. If a resistor or capacitor starts smoldering, the chances are good that it will become blackened.

Fig. 2-10. One solder spot holds the lop smeld to the botrom shistil it must be disconnocted

A burnt cover on a component is a sure sign of a bad component. In the same vein, you can often find trouble by feeling the temperature of a component. For example: the power supply box, when operating, becomes a bit warmish to the touch. If it is cold it is not operating. Other examples are the chips. Some of them are designed to operate warm and other ones quite hot.

The Feel Test

Table 2-1 is a chant for the usual feel of the large chips in the C128 with the ranges of "cool,"
"warm." and "hot." If the chip does not feel cool, warm or hot chances are it is defective, according to the chart. The way to perform the feel test is with the printboard freed and runsing for a few minutes. Tum the computer off and pull the plug before touching the chips.

Besides being sure you do not contact electricity by pulling the plug out before you stick your finger on a chip. you must also be very careful as you touch each chip. Some chips get very hot! They could bum your fingertips. Therefore, touch the chips with great care.

Fig. 2-11. A Phulips hades screw holds the rop shield to the video case top in tront of the RF Modulator nox.

CLEANING

Another service move that nught complete a repair, but is useful in any case, is cleaning. While the computer is apart, you will be able to see how much dust has been collected. When a computer is used, and time goes by, the inside will collect dust. unless you take extraordinary dust cover precautions. Actually, dust itself is not really an electrical problem. Ordinary dust is an imsulator and, as such. won't shor out the printboard or its components. The problem with dust is that it blocks off adequate ventilation. Dust enters through the ventilation slots. If enough of it collects, then air circulation is restricted which. inturn. can cause overheating. Should dust get into moving pants, as in the keyboard or
into the interface ports, it could cause clogged plugs. sticky keys and other types of erratic operation.

There are many ways to remove dust. I find the best way is to brush the dust out carefully with a thin, clean, dry paint brush. The chust removal should be done slowly and carefully. Be especially careful around the RAM section and the large chips since they are the most vulnerable to static electricity. Try not to dust on a day that is especially cold and dry where static electricity is jumping off of you. It is a good idea to ground the brush. There is more static electricity grounding information later on in this chapter and in Chapter 4.

Never, ever use any water or other household cleaning solutions on the board. The board must al-

Fig 2-12. The top shield is shown removed from the printboard Note the white spots on some of the larger chips the labs on the top shield are dressed with slicone and touch these chmps This is a heatsink the silicone transfers hoat from the chips to the shield During reassembly it is good practoce to apply more siltconte to these sarfaces.
ways be bone dry. The idea of dusting and cleaning is not to make the board shiny and spotless. All you want is good air circulation and a clear view of the circuits on the top and bottom of the printboard.

A good preventative item to use is a dust cover for the C128. If you place it on the C128 religiously after you use it you will avoid most of the dust prob. lems that occur. The only precaution needed with a dust cover is: do not put the cover on while the C128 is still warm from operation. Let it cool down first. The dust cover traps the heat somewhat and might cause difficulty.

STATIC ELECTRICITY

If you are going to be handling printboards and integrated circuits, then you should be briefed on
their worst enemy: static electricity. A silicon chip is considered sturdy and reliable in normal operation mounted on a printboard, but it is in serious jeopardy when it is loose and not in the protective board environment.

For example, if you walk across a carpeted room on a dry day, and reach for a loose chip. and a static spark flashes from your finger to the chip, then odids are that the chip has just been electrocuted. Oftentimes, you cannot stop the static buildup of the electric charge on your body. How can you avoid this problem? There are ways. Let's examine the situation first before discussing the preventative measures you can take.

Two general types of chips exist that you'll find in the C128. One is called a TTL, which stands for

Fig 2-13 in the viden tox are enght more chips. Two of them have siticone paste and touch a heatsink tab on the box cover

Transistor-Transistor-Logic. The other is called an MOS, which stands for Metal-Oxide-Semiconductor. More detail on the construction and operation of these chips is in Chapter 4.

Anoong the chip's vital characteristics is one called Threshold Voltage for Electrostatic Damage. This describes the anount of static electricity the chip can withstand without being destroyed. The average TTI. is not able to take a jolt of 300 volts or more. An MOS can't stay alive if a static shot of 250 volts or more is applied. Did you ever wonder how much voltage there is in a spark that leaves your body for a doorknob on a dry day? It could easily be 3000 volis! As you can see, it is an easy matter to lose a chip if you do not take proper precautions.

What is Static Electricity?

Static electricity involves the buildup of electric charges on the surface of an insulator. The charges are called electrons. The insulator will get charged if there is an excess or deficiency of electrons. An insulator with an excess of electrons is said to have a megative charge. When there is a deficiency of electrons, then a positive charge is present. The voltage developed gets larger as the charge increases. It doesn't matter which type of charge is on the insulator; either one will deal the chip a death blow.

Static electricity results from friction between different types of materials. Your-shoes-on-thecarpet is one way to produce this friction. As you walk around the room, you charge up. The rug and your shoes are both insulators. The charge is built

Fig. 2-14. Somw of the C128 power box units have these four bolts holding the case fogether
on your shoes. The charge is then transferred to your body, which is a conductor.

The charge on an insulator remains at the spot. where it develops. The charge on a conductor, however, spreads itseff evenly throughout the conductor. That is how we can get rid of the charge before it can kill chips. If we, as conductors, touch an earth ground, then the charge quickly leaks from us to the ground. The only problem there is: only the charge that was in our body is gone. The charge that is still on our shoes or on our clothing remains. Therefore, correct-chip-handling must still be observed even if we are grounded properly.

To help alleviate the problem, it is a good idea to wear conductive clothing. For instance, leather soled shoes are better than rubber soled shoes, and cotton clothing is more conductive than nylon.

Wrist Strapping

One technique that professional servicers use to deal with static electricity is called "wrist strapping." The wrist strap kit is available in electronic supply houses. RCA puts one out called an Antistatic Kit. It consists of a static dissipative mat, a light weight wrist strap, a coil cord, and a six font grounding cable.

In series with the wrist strap, cord and ground is a resistor, typically about a megohm. Figure 2-18 shows the grounding scheme and Fig. 2-19 is an 1Iustration of the RCA kit hookup. Any charge that builds up in your body will immediately be shunted off to the ground with this arrangement. Note that this is an electrical earth ground. An electrician usually attaches his ground to a cold water pipe for a good earth ground. If you are in doubt about the

Fig. 2-43. Inside the power box aro some small cricuir boards and two easy to replace fuses

Fig. 2-16. If a sliver of solder should lall across wring strips it will cause a shon cricutt. Should a copper etch frack break it could be an open circuit.

Cabinet botiom

Fig. 2-17. The printboard is the top of a sandwich. Beneath the board is an insulator Under the insuator s the meots ground plane if a component lead shoutd plerce the insulator and contact the sandwich bottom the ground plare then a short circult could develop.

Table 2-1. This is a list of chips that can be quick-tested with a hot-werm-cool feel lest. It the condition of the chip does not match the chart, then the chip could be defective.

Chip			Operating Condition
U1	CIAI	6526	Cool
U4	CIA2	6526	Cool
U6	MPU	8502	Warm
U10	MPU	280	Warm
U11	PLA	8721	Warm
U7	MMU	8722	Warm
U5	SIO	6581	Warm
U22	VIC	8563	Hot
U21	VIC	8564	Hol
U32	ROM 1		Warm
U33	ROM2		Warm
U34	ROM3		Warm
U35	ROM4		Warm
U38-	U53 S	el of RAM	Cool
U18	Charac	cter ROM	Warm
U19	Color	RAM	Cool

Fig. 2-18. In order to keep static electricity on your body at a harmiess, low level, commercially available wrist sirap sysfems can be used. They provide an escape path to earth ground for the unwanted charges.
earth ground, then consult an electrician to be sure you are connected correctly. If you do not connect to a true earth ground then the connection could be useless and not discharge your static voltage.

It is also vital for the wrist strap to be used only while you are working with equipment that is completely disconnected from any sort of electric power?

Fig. 2-19. ACA markets an antistatic kit to keep you and your workbench as static free as possible. It consists of a static charge dissipative mat, a lightweight wrist strap, coil cord and a 6-foot grounding cable that constantly drains static charges to ground. It is used ONLY white you are working with equipment that is completely disconnected from any sort of electric power!

While you are wearing the strap system, then you are securely connected to ground. If you contact the 120 Vac, you could get a nasty electric shock. That is why the megohm resistor is in series with the cord. It is supposed to limit the amount of current: if you do manage to contact the 120 Vac . To be safe, only connect yourself to the wrist strap system during chip handling on disconnected equipment.

Put the wrist strap on after you pull all power plugs on the equipment. Then you can take the C128 apart. Keep the strap on during any chip handling. You are producing static charges with every move you make. After the chips are safely installed in the equipment you can remove the strap. Once the strap is off you then, and only then, you can plug the C128 into the power line.

Additional Precautions

The professional electronic technician often uses a lot of other static discharge techniques to avoid killing chips with accidental static charges. First of all, he pays attention to the workbench. Workbenches for electronics are usually made of insulat-
ing materials like pressed wood. As insulators, they can build up charges. You can't easily discharge the entire work surface because a ground wire will only discharge the point on an insulator that the wire touches. To solve this problem, the technician will ground the printboard he is working on. Ensuring that the board is not connected to power, the tech will connect a jumper wire, with a one megohm resistor in series, from the board to earth ground.

When you receive a new sensitive replacement chip, you could find it plugged into a black piece of what looks like insulation. It is not insulation: it is a conductive material. With all the pins plugged into it, all the pins are more or less shorted together. which is a safe condition. When you pull the chip out of the material and free the pins, then the danger begins. Don't remove the chip from the material till the moment of installation, and then only when you are prepared by being grounded properly.

There are special tools for chip handling. A chip
extractor has a hole in the top that can be connected $t 0$ ground when necessary. A companion tool is the chip inserter. It can also be connected to ground easily through the-pin on the top (See Chapter 4).

Sometimes static electricity is not a problem and you can let up somewhat on your chip handling precautions. If the humidity is relatively high, and there is no trace of static charge. TTLs can be handled without fear of damaging them. MOS chips, though, should always get extra care. They could be killed at any time.

I don't mean to scare anyone conceming these chip handling problems. It is possible and even likely that you could successfully replace the chips in your C128 without these grounding measures. However, if you do have to replace a chip in your computer and it takes weeks until you receive delivery on it, you will get rather frustrated should it blow out from a static spark, due to careless handling, before it is installed.

3. Chip Location Guide

The previous chapter showed you how to take the C128 apart and free the printboard. Once the board is out in the open, you will see a conglomeraLion of chips, resistors, capacitors, transistors, copper connecting etch tracks, metal boxes, ports, switches and other things. It is like flying over a city and trying to figure out what is where. This chapter maps out the C 128 environment and identifies all the main components so that you can know where you are if you make any service moves.

Figure 3-1 is the map. It is the Chip Location Guide. It shows the physical relative position of all the chips, transistors, ports and switches, de test proints, a filter capacitor, a diode and a couple of adjustment spots. During servicing, the Location Guide is referred to continually. Many repairs can be consummated using only the Location Guide as service information.

SPECIFIC INFORMATION

As you look at Fig. 3-1, you'll find that the front of the printboard is on the right of the page and that
the left side represents the rear of the board. Across the rear panel are seven ports and along the right side are four more, plus the off-on switch. Table 3-1 lists these components. The ports are called CNs and the switch. SWl. All the ports and the switch have connection points. They are all numbered. In Chapter 23 the voltages and logic states as well as the pin numbers are provided. The Location Guide zeros you in on the physical positions of the ports and switch so that you do not accidentally try to test the wrong port.

You can see that in front of the RF Modulator box there is another metal box on the printboard. The box has a metal top with some ventilation holes in it. The Location Guide shows this box uncovered and displays the interior. There are eight chips, three transistors and an important adjustment coil in the box.

The transistors are given a prefix Q. There are six transistors. Q1 through Q6. on the printboard. There are some more transistors in the power supply box and in the RF Modulator box. However, they

F.g 3.1 The Chip Locatron Guide is the most used piace of service informat:on during repairs

Toble 3-1. This is itst of the connectors and switches around the top and right side of the printboard counting clockwise.

Rear and Side Panel Clockwise	Item *
User Pon RGEA Output RF Modulator Box Composite Video Output Serial Porl Cassetle Por Expansion Port Powes Supply Input OtI-On Switch Rese! Switch Contral Port 2 Contral Port 1 Keytoard Pon	CN9 CN10 M) CNB CNE CN? CNi CNiY SWI SW? CNs CN3 CN5
Internal	
Senal Bus conmections Power Supply connections	$\begin{aligned} & \text { CN7 } \\ & \text { CN:? } \end{aligned}$

Table 3-2. Six discrete transiaiors are on the printboard locsted shown.

Transistor	Located at
Q1 2SC1815	Near top of U22, 8563
Q2 2SC1815	Near top of US. SID
Q3 25D880	Left of Expansion Port
Q4 2SC1815	Leff of U21. VIC
O5 2SC1815	Below Q4
Q6 2SC1815	Near bottom of Li11, PLA

Table 3-3. The three power supply output voltages cen be tested at these locations.

DC Test Points	Located at
+5.0 Volts	Bontom lett of board at bottom of resis- for R338 Top right of board below the Basc connection of Q3, on the left connec- tion of resistor R3 Boltom center of board next to pin 7 of U11. the PLA, at top connection of resistor R45
11.9 Volts	

are covered separately in their own chapters. The six printboard transistors are listed in Table 3-2, along with reference locations.

On the right top quadrant of the Location Guide. a $1000 \mu \mathrm{~F}$ filter capacitor and a diode CR15 are shown. They are important lest proints, as described in Chapter 24.

There are three de voltage test points shown on the guide. They are listed in Table 3-3. They are also described in Chapter 24.

Then there are the 63 chips. They have U numbers-U1 through U63. They are scattered all over the board. They are different sizes, and vary from U59 (a 12 volt voltage regulator, with only three pins) to U22 (the Video Controller with 48 pins). The pin sizes can be judged on the Location Guide by comparison. Note that the largest chips are 48 -pin, the next largest. like U6 the MPU are 40 -pin, the ROMs are 28 -pin, and so cm . For verification of the comparative sizes, you can refer to the various Test Point Charts of specific chips in their respective chapters. Exact details in schematic form can be found in the Master Schematic in the back of the book.

Besides providing the U number for each chip. there is additomal servicing information shown in the chips. First of all, the generic number of each chip is shown. With the generic number, you can purchase a replacement chip. Simply take the number to a supply house and give the counterman the number. He is able to look up the chip and crossreference the generic number over to the manufacturer's number of the brand that the carries.

Also, shewm in each chip on the location guide. is its given name. Table 3-4 lists all 63 chips on the board giving U numbers, generic number and given names. Lastly, in each chip is shown the keyway to identify the pin numbers.

The unfortunate thing about chips is: they can be pul in upside dews. The keyway won't prevent sou from installing it incorrectly. Howeves, the keyway does show you where the first and last pin numbers are. The keyway is a notch on the physical chip. It is shown as the black dot on the lop or bottom of the chip. Pin I is to the left of the chip when the notch is at the top, as shown on U6 8502. The pins

Table 3-4. The C128 hes room for 63 chips with U numbers.

U Number	Generlc Number	Given Name
UT	6526	Complex Interiace Adaptar
U2	4066B	Quad Bitaleral Swich
U3	74LS138	1-01.8 Decoder
U4	6526	Complex Interface Adapter
U5	6581	Sound Interface chip
U6	8502	Microprocessor
U7	8722	Memory Management Unit
U8	74LS08	Ousd 2 Hnpui AND Gate
U9	74 F 32	Quad 2-Input OR Gate
U10	280	Microprocessor
U11	8721	Programmed Logic Array
U12	74LS373	Octal 3-State D Latch
U13	74LS244	Octal 3-State Driver
U14	74L5257	Cuad 2-Input Multiplexep
U15	74LS257	Guad 2-Input Mulkiplexer
$\cup 16$	74.514	Hex Schmitt Trigger
417	74.5373	Ocial 3-State D Latch
U18	$390059-01$	Character ROM
$\cup 19$	2016	Color RAM
U21	8564	Video Interlace Chip
U22	6563	Video Controller
U23	4416	DRAM
U24	7415244	Octal 3-State Oriver
U25	4416	DRAM
U27	556	Timer
U28	8701	Clock
U29	7406	Hex Inverter Buffer
U30	7406	Hex Inverter Buffer
U31	74LS00	Quad 2 -input Nand Gato
U32	$251013-01$	Read Only Memory
U33	318018-02	Read Only Memory
U34	31801902	Read Only Memory
U35	Empty Socket for Functional ROM	Read Only Memory
U37	7406	Hex Inverter Butter
U38-U53	4164	DRAM
U54	741532	Ouad 2tnput OR Gate
U55	74F245	Transceiver
U56	741574	Dual D Flip-Flop
U57	7407	Hex Bulfer
U58	74LS03	Ouad 2-Input NAND Gate
$\cup 59$	7812	12 Voll Regulator
U60	7407	Hex Buther
U61	74LS08	Ouad 2-Input AND Gate
U62	74LS244	Octal 3-State Driver
U63	7406	Hox Inverter Bufter

are then counted counterclock wise down to pin 20. across the bottom to pm 21, and then up to the last pin 40.

When the keyway is mounted at the bottom of the chip, as $\$ 6$ the 280 MP ' M is on the Location

Guide, then pin I is directly to the night of the notch. The puns are still counted counteretorekwise from pin 1. Simply count upwards to the top right pin 20 , across to the left to pman 21 then drown to the hottom left pin which is pin 40. The rule is that pmi and
the last pin number are always across from each other at the keyway, and that the count is counterclockwise.

All the chips on the C128 board, except for U59. the regulator, are called DIPs. DIP stands for Dual Inline Package. This refers to the fact that there are two lines of pins on the chip.

The Location Guide Perspective

The Landmark sketch in Chapter 1, Fig. 1-11, and this Chip Location Guide. Fig. 3-1. show the actual physical locations of the most important components on the board. They do not show the small support components or the circuit connections between the chips. You do not need to bother with the support components or the connections in the first stages of a repair.

These guides are designed to enable you to quickly find a suspect chip or transistor. You can remove and install the twelve chips in sockets. It shows you where the adjustments are. It lets you know where convenient test points are for power supply voltage readings. It keeps the ports straight. it lets you make all your visual tests quickly and accurately. It turns out that, with only the aid of the Location Guide, you will be able to take care of a large percentage of repairs, cleaning and adjusting.

When the simple measures do not produce a fix. then you must use more complex service information. First of all, you can test chips for logic states with the Test Point Charts. The charts are close up views with the logic states that slrould be present on all pins. The charts are also physical replicas of the actual chips. The Location Guide shows you where each chip is on the board.

For even more serious servicing, you will require the Master Schematic. It uses electronic symbols to represent the physical chips, transistors, capacitors, etc. You must, in your mind, be able in relate the symbols to the actual components on the board. The symbols bear no resemblance to the components. Also, the pin connections on the schematic are drawn for the convenience of the draftsman, and there is no rule such as counting counterclockwise. The pin connections can appear
anywhere on the drawn symbol. You'ti pick up tips on reading schematics as you proceed through the book. Anyway, you'll find that the familiarity you gain with the Location Guide helps bridge the step of finding a part or connection on the board after reading the schematic.

CHIP SURVEY

Getting back to Fig. 3-1. the chips appear to be scattered helter skelter ill over the board. Yet there is good design in the layout. The chips are wired up in groups according to the various jobs required in a computer. Let's check out the major chips on the board and take an overview of their operation.

Microprocessors

If we view the board in quadrants, from the front, the MPUs are in the lower right. They are the 85002 and the 280 sitting next to each other. The 8502 is used to operate the C128 and C64 modes. The 280 works when the CP/M modes are in operation. The 8502 is an upgrade of the old 6502 and the $\mathbf{Z 8 0}$) is the same one used for years. They do not operate together. Either one is working, or the other one is, according to the mode you are using. Chapters 12 and 13 cover the two processors in detail.

The MPUs have the job of addressing all the residents of the memory map around the board. They send and retrieve data from the memory, and process the data with the aid of internal registers, its arithmetic and logic center, and its control cenler, The MPU uses its internal registers as temporary memory locations to store results in progress, incoming instructions, and memory map addresses that will have to be contacted during the data processing.

The arithmetic and logic center does the data processing. It is known as the ALU for Arithmetic logic Unit. It performs all the calculations. It also selects, sorts, and compares the information according to the instractions it receives. The control section is a traffic cop in the MPU that keeps the data traffic moving in the correct direction at the proper tume.

Complex Interface Adapters

The two main I/O chips are the two 6526 Complex Interface Adapters referred to as the CLAs. U1, known as CIA1, is located in the lower right quadrant also, next to the two MPUs on their right. Directly to the right of CIA1 is the keyboard port. The keyboard port is wired directly to CIAI. If you look closely at the bottom of the actual printboard. then you can see the copper etch tracks connecting the plug to the chip. It is obvious then that CLAI is the UO port for the keyboard. In fact, that is the main job ClAl performs.

However, CIA1, in its spare moments, also takes care of the $1 / 0$ needs of the two nearby Control Ports, 1 and 2.

CIA2, the other 6526 I/O chip. is found in the upper left quadrant of the board. It is the chip that handles peripheral signals from its nearby ports. They are the User Port and the Serial Port.

The Clis are 40 -pin chips and do a lot of work in the C128. They are covered in detail in Chapter 19. Besides being an entrance and exit way for the above mentioned ports, they also perform a lot of other jobs: they possess shift registers and precise timing circuits; they have a time-of-day clock; they are also the source of many interrupts that permit the MPUs to service vanous circuits.

The Video Interface Chips

As mentioned earlier, the C128 operates as a C 128 , a C 64 and as a CP/M program runner and writer tool. In the C128 mode and the CP/M mode, the machine is able to output both 40 -column and 80 -column displays. There are two video output clips-one handles the 40 -colums output and the other the 80 -column output.

Both of the chips are found on the Location Guide in the upper left quadrant. They are under the metal shield of the video container below the RF Modulatur box. On the right side of the video container is the 48 -pin 8564 VIC chip. It is an upgrade of the 6567 VIC chip that is in old C64 machines. This newer VIC takes care of all the 40 -column display needs for the C128 and CP/M modes. It also
takes care of the 40 -column display that the C64 mode puts out.

On the left side of the metal box is the 8563 Video Controller chip. Its job is to produce all the 80 -column displays that the computer is capable of. It produces 80 columns for the CI28 and CP/M modes. The C64 mode can't use an 80-column display. so the chip is not used when the C64 mode is in operation.

The video output chips are the interface between the digital circuits and the analog video output circuits. The chips receive inputs from the digital computer circuits. Inside the chips, the digital signals are transformed into analog outputs. The ana\log outputs are various TV signals and RGBI signals. The 8564 VIC chip produces two TV signals, one called Luminance/Sync and the other Chroma. In the RF Modulator these signals are combined to help produce the Composite TV Signal. The two signals are also output individually to the Composite Video Output Port.

The 8563 Video Controller Chip receives digtal signals also. It then converts the digital to ana\log Red, Green, Blue and Intensity signals. The signals are then output in the 80 -column format. The 8563 also generates the required sync signals.

The video chips are the source of many forms of outputs. They produce variations of alphanumerics, semigraphics and pure graphics. One of the features of these machines is to be able to generate "sprites." A sprite is a high resolution programmable ligure that can be put into a graphic display. It is used in sophisticated graphic programs. A sprite can be formed in all types of conceivable shapes and made to cavort freely around the display.

These complex video output chips can act somewhat like MPUs. They have addressing and programmable capabilities. In some cases it is possible to have the actual MPUs turned off and let a video output chip take over the computer during video processing. When a video chip is in charge. it conducts the addressing and control functions that the MPtI normally performs. Details on the 8564 chip is found in Chapter 20, and the 856.3 is covered in Chapter 21.

The Sound Interface Device

In the upper right quadrant. just right of the video box is the 6581 SID chip. SID is the companion of the viden chips that produce the sound to go with the TV display. SID is a 28 -pin chip and is a programmable resident of the memory map. On the printboard it is known as U5.

SII) is wired to the data bus, and also to enough lines of the address bus so that it can be addressed. The details are supplied in Chapter 22. SID has direct inputs from the MPUs and can be programmed easily. SID's output is audio and goes to an audio output amplifier and then to the RF Modulator. From the modulator, the audio goes to the RF Output phag. SII) also sends audio directly to the Composite Video output port. Sound can then be heard from a home TV acting as a monitor or from an actual monitor with sound capabilities.

SID is the same chip that is also found in the C64 machines. It is referred to as a three voice electronic music synthesizer. It is used to generate interesting and exciting sound effects to go with the graphics created by means of sprites and other video creations. SII has a wide range of frequencies that is can produce. There is a high resolution control of the frequencies, harmonics, and volume.

SID is able to generate four different types of audio waveforms. They are known as triangular, sawlooth, rectangular and white noise. The frequency of each waveform can be varied individually. Once generated, the sound can be fed to an envelope shaper circuit. The audio arrangement of sustain level, attack, decay and release rates is made. With these variables you can produce audio that imitates musical instruments and other noises. Chapter 22 tells you how to test SID for these sound effects.

SII), like the video chips, is also a digital-10analog converter. The digital inputs from the programming are changed to analog audio outputs.

The MMU and the PLA

Once the address bits leave the MPU, then they are processed in a very complex way. U7, the 8722

Memory Management Unit, in the upper right quarrant, and L111, the 8721 Programmed Logic Array, on the border between the boltom two quadrants. do most of the processing. Chapter 15 covers the 48 -pin MMU. Chapter 14 goes over the operation of the other 48 -pin PLA chip.

In general, the MMU uses its address and data bus inputs and outputs to access and handle the two banks of 64 K RAM in a custom styled manner. There are a number of ways that the RAM could be used. The style of use is determined by a lot of things, most important of which is the mode you want the C128 to operate in. You could say that the MMU controls the operating mode.

The PLA works as an assistant to the MMU. The PLDA also receives an input of address bits, but in addition it receives imputs from the MMU. The PLA in turn generates a lot of chip selection signals. While the MMU is addressing the RAM banks in the memory map, the PLA selects the other chips. It selects the ROM to be used-if a cartridge is plugged into the C128 it will select it. It is able to select the color RAM chip, the VIC registers, the Character ROM and all the I/O devices.

Between the MMUI and the PLA, most of the chip selecting and location addressing is conducted. The operation details are covered in Chapters 14 and 15.

The 128K RAM

The C128 is blessed with 128 K of RAM. The RAM is contained in 16. Dynamic Random Access Memory 4164 chips. The MPUs in the C128 are the so called eight-bit types. An eight-bit MPU can directly address only 64 K . Therefore the 128 K is broken up into two 64 K banks, called Bank 0 and Bank 1. With the help of the MMU chip, the processor in use is then able to address each bank in turn. The full 128 K of RAM is located in the bottom left. hand comer of the printboard.

The 16 chips in the two banks are all identical 16 -pin chips. These RAM chips are the storehouse for the MPU. The chips are able to store data and then transfer the stored data back to the MPU when it is addressed. Chapter 6 goes into the details.

Fig 3.? Dynamic RAM is organized in bits. An addressed location is found sphit up on eight chups. Each chip extputs one bit of the byte at the location

In one bank there is 64 K of RAM. In each of the 64 K locations there is one byte of storage space. There are eight bits in each byte. Each bit is connected to one of the eight corresponding lines of the data bus, D7 through D0. The bits in each tocation are numbered $7,6,5,4,3,2,1$ and 0 , as shown in Fig. 3-2.

In this type of dynamic memory, you'll find that a location of eight bits is not on a single chip but is spread over the eight chips. Each chip of the eight in a bank cuntains one bit of a location. In order to address a location, you must contact all eight bits. Chip number 7 of the bank set contains all the number 7 bits for all of the 64 K locations. Chip number 6 has all number 6 bits and so on. When the MPU addresses these RAM locations, then it is actually addressing all eight chips at the same time. If gets one bit of the location from each chip.

Dynamic RAM, such as these 4164 chips, stores bits as charges, or noncharges, in a grid of tiny capacitances. The charge in the capacitance is very fragile and can only exist for a few milliseconds before it leaks off. It must be recharged every few mil-
liseconds in order to hold the charge. This recharging, called "refreshing," is conducted by a special refresh circuit in the VIC chip. The refreshing is conducted continually by VIC as long as the C128 is running.

The ROMs

Directly above the 128 K RAM are located the ROMs one. two, three, four and an empty socket for a possible iffth special ROM. The fifth ROM is called "functional ROM 1." The five ROMs are U32, 33, 34, 35 and 36 . They are all 28 -pin chips. They are covered in Chapter 7.

The ROM is unlike the RAM in that it is a Read Only Memory. The ROM is already filled with permanent bits that are "burnt" into the undividual kocations. Also, unlike the dynamic RAM memory, a location is not spread over a group of ROM chips. Each addressed location is found complete on a chip. All eight bits of a byte location are together on one chip, as Fig. 3-3 indicates.

The main difference between a ROM and a RAM is: the ROM can only be read by the MPU.

Fig. 3-3. This ROM is organized in bytes Each addressed location is on one chip and contains eight bits.

It cannol be written to successfully. Writing to a ROM is useless. It does not respond.

The permanent programs contained in ROM chips are the controlling brains of the computer system. The MPU is just a talented workhorse taking its orders from the ROM system operating programs. The MPU has no mind of its own. That's why, if a ROM chip becomes defective, the MPU starts running without direction and fills the display with garbage.

Inside the ROMs

The ROMs are located on the left side of the board, in a clump, about the middle of the board. There are five ROM locations; four are filled with
chips while an empty socket is present for use with a firth ROM chip. The four ROMs in operation all have 16 K locations. The fifth ROM, when it is used. has a 32 K socket awaiting it.

ROM1, U32, is the closest ROM to the edge of the board. It is the controller when the computer is operating in the C64 mode. The PLA selects ROM1 during C64 operation and leaves the rest of the ROMs turned off. ROM1 contains the C64 operating system. This is a combination of BASIC 2.2. the C64 Kernel and other operating forces like the 40 Column Editor. There is more detail on these systems and the contents of the rest of the ROMs in Chapter 7.

ROM2, U33, is next to ROM1, directly to the right. It is selected by the PLA when the computer
is put into the C128 mode. In operates the BASIC 1.0 Version 7.0.

ROM3. U34, immediately to the right of ROM2. also operates in the C128 mode and controls the BASIC HI Version 7.0. In addition, ROM3 contains the operating system for the Monitor that you can use when you enter machine language programs from the keyboard.

ROM4. U35. is found directly above U34. It is also needed for C128 operation. It contains the C128 Kemel. Kemels in these Commodore machines take over and control all the input, output and memory management functions of the computer. Most of the time the work consists of transferring data from the MPU to the memory and back again. Another vital job is to verify the data that travels from place to place. The operating system has special load, store, and verify routines that BASIC calls upon to conduct its business.

The Kemel is a special operating system adjunct that attempts to keep the operating system up to date as time goes by. These C 64 and C 128 programs will, in the future, be improved and upgraded. The Kernel is therefore built with special jump tables that are designed to accommodate changes. That way. the machine language routines that you might write will not become obsolete and will work with newer versions of the C64 and C128. The Kernel attempts 10 maintain the compatibility of your present machine with future machines. There is more about the Kernel operation in Chapter 7.

The empty socket to the left of ROM4 is called U36 and is inoperative till a special functional ROM is plugged into it. Any such ROM will have special applications. However, there is no sense in worrying about it if it's not there. You can concern yourself with the socket since it is wired onto the board and will have some voltage and logic states on the pins. These are covered in Chapter 7.

Other Board Landmarks

There are more, not so prominent landmarks, all over the board that you will get to know if you spend time with the printboard-examining voltages, logegic states and scope pictures. Most obvious are the RF Modulator box at top left. the expansion port at top right. the user port at top left, the off-on switch on the lop right end of the board, the cassette port to the left of the expansion port, and so on. There are three dc voltage test points on the board. One is just below the expansion port to the left. It should read +11.5 volts de when normal. A second test point that should read +5 volts dc is in the lower right-hand comer of the board. Thirdly, to the right of the PLA is a +11.9 Vdc point.

Other important spots on the board are: the places where the six transistors. Q1 through Q6. are found; the two adjustments to the sound coil in the RF Modulator and the 14 MHz to the left of VIC: the Character ROM U18; the Color RAM U19. All of these minor landmarks are discussed in detail in their respective chapters. They are all important test areas used during troubleshooting.

The chip location guide found in this chapter will be the most used piece of service information for the C128. It is a map of the printboard. It shows all the major components on the board and helps locate items.

It is easier to use than a photo of the board because it does not confuse the situation with all the wiring and hundreds of small components and connections. For these fine details you can refer to the board itself, the Test Point Charts, and the Master Schematic in the appendix.

The Location Guide provides you with clear locations of the 63 chips, the six transistors, the 10 extemal ports, two important adjustments, three de test points and a few other items. Begin with this piece of service information.

4. Chip Changing Techniques

When chip trouble strkes your C 128 , then you follow these steps.
(1) Interpret the symptoms and come to some sort of diagnosis.
(2) Decide which chip or chips are the prime suspects.
(3) Disassemble the machine to gain access to the suspect.s.
(4) Run some tests on the involved chips.
(5) If a chip is bad, then it must be replaced.

While the first four of the above steps nequire a steady hand, they are relatively danger free. Not so with step number 5 . That's because inside the chips are transistors the size of germs. These transistors, possibly thousands upon thousands in a single chip. usually very rugged and reliable while the chip is connected in its designed circuit, become sensitive and fragile when they are free and out of their protective circuit.

The danger begins when a chip is either plucked out of its socket, or otherwise removed from the printboard. Some chips are more vulnerable than others. The dangers consist of physical pulling and pushing, heat, voltage and static electricity. As a general rule, the smaller chips are less sensitive and the larger chips are more sensitive. The larger the chip, the more care it requires when it undergoes movement to and from the printboard.

Even though some chips are more rugged than others, it is a good idea to treat them all with great care. This chapter covers the general techniques needed to handle the various forms of C128 chips when taken in and out of sockets, or desoldered and resoldered. When you use the correct techniques and tools, you will be able to change and test chips with the least amount of danger.

THE RUGGED CHIPS

Table 4-1 is a list of the more rugged chips in the C128. You'll notice that most of them stant with

Table 4-1. The Trl rugged chlp types are often 74-types.

U Number	Generlc Number
$U 3$	$74 L S 138$
$U 8$	$74 L S 08$
$U 9$	$74 F 32$
$U 12$	$74 L S 373$
$U 13$	$741 . S 244$
$U 14$	$74 L S 257$
$U 15$	$74 L S 257$
$U 16$	$74 L S 14$
$U 17$	$74 L S 373$
1124	$74 L S 254$
$U 26$	556
$U 27$	7406
$U 29$	7406
$U 30$	$74 L S 00$
$U 31$	7406
$U 37$	$74 L S 32$
$U 54$	$74 F 245$
$U 55$	7407
$U 56$	$74 L S 03$
$U 57$	7812
$U 58$	7407
$U 59$	$74 L S 08$
$U 60$	7406
$U 61$	
$U 63$	

74. These are usually TTL chips. TTL stands for Transistor-Transistor-Logic. The TTL name is given because, as shown in Fig. 4-1, the input transistor on such a chip is a bipolar type but is endowed with double emitters.

A bipolar transistor (aside from the TTTL), without going into a long dissertation, is one with three connections called the Emitter, Base and Collector: E. B and C. Figure 4-2 depicts the way typical npn and pnp bipolar transistors move electrons and holes that electrons can be kept in. The transistors are called bipolar because conduction takes place in two directions at the same time. The electrons, carry a negative charge travel in one direction between emitter and collector, while holes which carry a positive charge travel in the other direction. This type of conduction is different than Field Effect Transistors, FETs, which is discussed next. The FETs move either electrons or holes but not both at the same time. If you desire more details on bipolar transistor theory, please look it up in the many books available from TAB.

The TTL is a chip that evolved from earlier chips such as the RTL and DTL. The TTLs have

Fig 4-1 The TL (Transistor-Transistor-Logic) chips are based around special transistors with double emittors.

Fig. 4-2. Bipotar transistors aro so cafled because they have electrons moving in one direction while holes are moving in the other.
combined a lot of the important features of these earlier chips. The RTL. which stands for Resistor-Transistor-Logic, was among the first forms of integrated circuits. It was an inexpensive chip that was easily wired up with larger discrete components such as resistors and capacitors. However, the RTL was highly susceptible to voltage noises, and it had a low fanout ability. Fonout is the characteristic a chip has to drive a number of parallel loads. The RTL can only drive a few loads.

The RTL gate in Fig. 4-3 uses two resistors in the base inputs of the two mpn bipolar transistors. That is why it is called a Resistor-Transistor-Logic chip. This particular configuration is called a NOR gate. There will be more about NOR gates in Chapter 10 .

The DTL gate in Fig. 4-4 uses diondes in the input circuit rather than transistors. This change of component makes the gate faster, gives better noise immunity protection due to diode clipping, and increases fanout characteristics. In addition the DTL
permits a large fan-in. Fan-in is the ability of the chip to accept parallel inputs. The diodes are able to isolate the gate imput circuits from the preceding stages and many parallel inputs can be connected without loading the input. The basic DTL circuit is called a NAND gate. There is more about NAND gates in Chapter 10.

The TTLs in your C 128 evolved from these two basic circuits. In 1961. Thompson invented the TTL. It is like a DTL in that there is a diode action in the input. The input is through the double emitters of the transistor. The extra emitters are pn junction, just like diodes. All the inputs to the chip can enter through the multiple emitters and be isolated in the same way the DTLs are isolated. The circuit operation is quite like the DTL.

There is a whole lamily of TTL chips-more than 200 of them. A few mail order companies are listed in Table 4-2. You can purchase replacement chips from them or from local electronic supply houses.

Fig. 4-3. The RTL (Resistor-Transistor-Loguc) chips get their name from the resistors in their input

Fig. 4-4. The OTL (Diode-Transistor-Logic) chipe have diodes in thair input.

Teble 4-2. Lita of Mall Order Parta Houses.

Mail Order
Jameco Electromics
1355 Shoreway Rd.
Belmont, California 94002
Orders (415) 592-8097. Inquiries (415) 592.8121
JOR Microdevices
1224 S Bascom Avenue
San Jose, Cahlornia 95128
Orders 800-538-5000, Inquiries (408) 995-5430
DIGI-KEY Corporation
P.O. BOX 877
Thief River Falls, MN 56701
1-800-344-4539

While the number 74 indicates the chip is a TTL. there are letters such as L and S that also have special meanings. The letter \mathcal{L} stands for low power. When there is an L in the chip number, then it means that the chip uses 80% less power than a chip without the L designation. However, the lower power dissipation is at the expense of slower switching speed.

That is why there is usually an S accompanying the L in the nomenclature. The S stands for Schottky clamped diode. When the S is in the name, then there is a Schottky barrier diode clamp in the base circuit that speeds up the switching action. The S characteristic compensates for the slowdown caused by the low power characteristic. Therefore, if you are called upon to replace a 74LS type chip, use another 74LS type and not a plain 74 type. While the two types are functionally about the same, the exact replacement is always the best way to go. If you have no choice but to make a change, just be aware of it in case some other trouble symptom should suddenly appear. In some cases, the substituted chip will not work properly.

TRISTATING TTLs

The main business of the digital circuit in a computer is the processing of two logical states. The two states are known to a machine language programmer as 1 and 0 . To a technician, the states
are called high (1) and low (0). The high and low re fer to high and low voltages. Loosely speaking a high is +5 volts dc and a low is zero volts dc. These voltages speed through the digital circuits, and as they travel they are changed and changed again from high to low and back. That is all that digital circuits do. That is what the processing consists of: changing logic states.

At all the test points, which is every connection or pin you can lay a probe onto, you will be testing for logic states. As long as the called for logic state is present, then the pin is considered okay. Should a test point have the wrong logic state, then that could be a clue that could lead you to the trouble spot. Table $4-3$ shows the two most important logic state testers: the logic probe and the vom. The high and low readings and their corresponding voltage levels are shown. Also shown in the bottom column is the third possible state a connection could be in.

This third state (tristate, threc-state or floating, as it is called) can be confusing. It isn't actually a logic state, despite its description. It is a state of being, that the test point is in, when the computer is on but there is no definable output. It is the condition that the test point exhibits when the chip is energized but is turned off in the circuit. The TTL output, being shut off, assumes a high impedance condition. Any voltage level that might develop on the tristated test point is simply static noise buildup, not logic. In contrast, the zero voltage state is a connected state, the test point reads a voltage, but the voltage is zero.

When a chip is tristating, there is no definable output voitage. As a matter of fact, if you should take a dc voltage reading with a vom, there will be a voltage reading in the vicinity of 2 volts. It is a result of accumulated static electricity, not a logical high or low. Should you read a tristating test point with the logic probe though, then no LED lights will glow. indicating the tristate condition. There will be more about testing TTLs in Chapters 10 and 11.

Some TTLs are built with a tristating ability. They have a special input stage that is able to disable the TTL gate upon command. Figure 4-5 shows a chip with the disabling stage. There are three npn

Table 4-3. The vom and logic probe are the best ploces of test equipment with which to check chips.
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { LOGIC } \\ \text { STATE }\end{array} & \begin{array}{c}\text { VOM } \\ \text { READING }\end{array} & \text { LOGIC PROBE } \\ \text { LEDLIGHTS }\end{array}\right]$

Fig. 4-5 The top part of this chip is a TTL NAND gate The bottom is a disable stage The disable stage can act as a switch to turn the NAND off and on. When off, the NAND is tristating or floating.
transistors and a diode in the disable stage. They are Q2, Q3, Q5 and D1. When the disable input is a low, Q2 will turn on fully, and as it is called, "saturate. " As a result of Q2 saturating, Q3 and Q5 will tum off. This turns off the output of the disable stage and the stage is disconnected from the rest of the chip. The rest of the chip operates as if the disable stage is not present. The normal processing of 1 's and 0 's continues unabated.

Should the input of the disable stage go high. Q3 and Q5 will then conduct and kill the output current at Q4. This makes the output transistors of the gate, Q7 and Q8 stop conducting. This makes the chip tristate. Should you measure the voltage at the output. you'll find neither a defined high nor low. The only voltage there will be undefined, somewhere between a high and a low. Technicians might say, "it's floating."

During bench troubleshooting, you can test the output of a three-state chip at its output. You can also produce a defined output by causing a high at the disable input to effect the logic condition or a low input to get the undefined performance.

The three-state effect can be used as a valuable servicing tectunique. Sometimes when a chip dies, then it produces a three-state condition at its output. At other times, a three-state condition is present during normal operation. You can use the reading you obtain, compared to what the Test Point Chart reads, to figure out whether the condition is normal or if it indicates trouble.

The TTL is easily tested with either the logic probe or the vom. The only difficulty is the tiny size of the chip feet. The feet are test points, and you must have a bright light and a magnifying glass. Yous must take care to touch only the foot being tested while the C128 is on. Avoid an accidental shorting of two test points. Mast of the time you would probably be lucky if you shorted two points, but on occasion you'll bum something out by careless use of the probe.

The vom, measuring a TTL, will normally reveal a logical one, or high, by reading a voltage between 2.3 volts and 5 volts dc. The logical zero, or low, will display itself on a vom by reading a voltage between 0 and 0.8 volts dc . During a tristate condi-
tion. the vom will read somewhere in between, from 0.9 to 2.2 volts dc.

The logic probe has LED lights to denote the condition of a test point. Highs light the HIGH light, and lows make the LOW light shine. When the test point is tristating, none of the LEDS light at all. Table 4-3 rounds up all the high, low and three-state readings.

Most of the bench readings performed during servicing are either with the vom or the logic probe. The servicing consists of a search and seek expedition of examining tiny test points.

In the C128 there are a lot of TTL chips. They are covered in Chapter 8. They are, for the most pant, the smaller support chips and are soldered onto the board without the benefit of having their own sockets in which to reside. The TTLs, as a rule, are fairly rugged and can take handling and soldering without 100 much fear of damage. They are also easily and safely tested with both the vorn and logic probe. The actual logic states that exist on the TTLs are shown in the many Test Point Charts throughout the book. The Test Point Chart index (after the Table of Contents) gives the figure numbers of the charts in the book.

THE SENSITIVE CHIPS

The other main group of chips, which include all the large important chips, are too delicate to apply forces to. The forces are pushing and pulling. heat, freezing and voltage. The group is loosely referred to as MOS chips. MOS stands for Metal Oxide Silicon; alternately some users might mean Metal Oxide Semiconductor. There are three types of MOS. They are: the NMOS, based around $n-$ material silicon; the PMOS, that has p-material silicon: the CMOS (Complementary MOS), which contains both n and p silicon channels for electrons and holes to move through.

All of the chips in both the rugged TTL and the sensitive MOS groups are encased in ceramic or plastic packages. The packagng has no electrical influence on the chip except that the package supports the metal legs that attach to the printboard or plug into a socket.

Practically all of the chips, which are tiny silicon wafers, are wired into what is known as Ineal Inline Packages, DIPs. There are two parallel rows of feet-one row on each of the long sides of the rectangular package. More about the DIPs is given later in this chapter. The packaging is the same for both TTL and MOS chips. You can't tell the difference between TTLs and MOS's by looking at them.

While the TTLs are composed of circuits containing bipolar transistors, either npn or pnp, the transistors used in the MOS circuits are the Field Effect Transistors, FETs. The TTL bipolar transistors have elements called emitter, base and collector. The MOS Fick Effect Transistors have elements called source, gate and drain. The only thing the TTL chips and the MOS chips have in common is that they are both made out of pieces of p and n semiconductor material.

As described earlier and illustrated in Fig. 4-2, the bipolar transistors in the TTL chip are constructed with building blocks. There are two types of blocks made of a material and p material. A pnp, as the name suggests is a sandwich. The n material
is sandwiched between two pieces of p material. The junctions between the different materials are fused together and form pn junctions. The npn is also a sandwich with p material in the center and n material on both sides. Whether the device is a pnp or npn: the top piece is always the collector, C; the center piece is always the base, B ; the bottom piece is always the emitter, E.

The bipolar transistor can roughly be thought. of as three gears meshing at the junctions. If you get a small current to flow between the emitter and base, then that will get a large current to dow between the emitter and collector. This is called a current amplifier. The bipolar transistor deals in current amplification. This is different than the FET that deals in voltage amplifying. We'll get to that in a few paragraphs.

The FET is not constructed with the same building block layout. The FETs on the chips are made with a channel. The channel can be thought of as a piece of either n material or p material. Study Fig. 4-6. On the left side of the channel is the connection called the drain, D. The other side of the chan-

Fig. 4-6. The basic IGFET has tour ronnectable soctions. The source, the gate the drain, and the substrate.
nel has the connection called the source. S. In between D and S is a layer of insulation made of a glassy silicon dioxide. On top of the oxide insulator is attached a metal lead. The oxide and the lead are called the gate, G. Note that the lead is not connected to the channel, it is insulated from it by the oxide.

That the oxide remains intact and maintains the insulation is crucial. When tragedy strikes, as shown in Fig. 4-7, and a hole is blown in the oxide, then the FET will die and your $\mathrm{C1} 28$ will be in trouble.

Because there is an insulator between the gate lead and the channel, electric current cannot pass from the gate to the channel. In the bipolar transistor, the base, which is analogous to the FET's gate, is not insulated from the emitter-collector path. That is why the bipolar transistor is called a current amplifier. The current from the base controls the emitter-collector current.

In the FET, current can't Dow from the gate to the channel, but a voltage on the gate can affect electrons flowing in the channel. A voltage on the gate, if it is varied, in turn will vary the number of electrons that flow in the channel. For example, if the voltage is high, it can stop the electron flow altogether. If the voltage is low, it can allow the elec-
trons to flow in full strength. Whatever its value, the voltage on the gate directly influences the channel electron flow between the source and the drain. That is why the FET is called a voltage amplifier.

During troubleshooting and repair, the way the microscopic transistors are performing in the chips is abstract. There is no ordinary way that you can test the individual TTL or MOS transistors.

All three types of MOS chips plus many variations are in common use. Forms of the NMOS are used a lot in large scale integration (ISSI). The LSI chips are those with about 100 individual gates on a chip. It is sometimes useful to know that NMOS chips use a + de supply voltage.

The NMOS is referred to as a single-channel, one-polarity chip. This means that the dc voltage applied to it goes to all the FETs on the chip at the same time. The ground retum is also connected to every FET on the chip. But the gates, sources and drains have their own configurations according to the job they perform on the chip.

When the channels are made of p material, the resultant PMOS chip works in a similar way, except that positively charged holes move from source to drain, instead of negatively charged electrons as in the n material. In an n channel, a + voltage is ap-

Fig 4-7. The glassy oxide insulator between the gate and the chamnol is very Iragile Static alocircuty can ansily blow a hole through it.
plied to the drain to attract electrons from the source. In a p channel, a negative voltage is applied to the drain to attract holes from the source. The gate still does the voltage controlling job except that it varies the intensity of hole conduction rather than electron conduction. You'll recognize a chip with p channels because the schematic shows a negative dic supply connected to the chip. Whatever the polarity, whether holes or electrons are on the move, the sensitivity of the MOS chip-to-gate oxide rupture remains the same. Great care must be taken while handling and testing any type of MOS chip.

The CMOS chip is the common one used in small scale integration (SSI). SSI is the term used for the chip with less than 10 gates to a chip. The CMOS type is also used a lot in medium scale in. legration (MSI). MSI chips contain between 10 and 100 gates. Please note that the number of gates is not the same as the number of individual transistors. There can be many microscopic transistors in a single gate.

Typically the supply voltage to a CMOS is of a positive nature. Internal wiring takes care of changing the voltage polarity and applying a correct polarity to the different channels. The NMOS is thus able to propel electrons from source to drain. The PMOS is able to move holes from source to drain. The insulated gates are then able to exercise control over the channel currents, no matler whether electrons or holes are on the move.

Just as the TTL chips have been designated numbers in the 7400 or 74LS00 series, the CMOS small package chips are assigned numbers in the 4000 series. An example of CMOS chips in the C128 are U2 and U20; both are type 4066, a quad bilateral switch. This chip receives more attention in Chapter 8.

THE DIP PACKAGE

If you take a close look at the chip layout on the board of your C128, then you will see that the chips are in a rectangular package with two rows of evenly spaced feet on the two long sides of the rectangle. There are no feet protruding out of the top or the bottom of the chip. In the Test Point Charts, the
chips are drawn exactly as they exist. On the schematic the chips are drawn for the convenience of the drawing. On the schematics the connections bear no physical resemblance to the actual chip as the Test Point Charts do. While you can take test readings directly by comparing the Test Point Chart to its chip on the board, you can't do that with the schematic. You must take an extra mental step when using the schematic. You have to relate the pin numbers of the schematic to the pin numbers on the physical chip. This extra step clutters the troubleshooting reasoning you are going through. It takes time to master relating the schematic to the physical circuit. With a little practice though, the technique can be handled and become natural.

The C128 printboard is full of chips. Practically all of them are DIPs, Dual In-line Packages, as mentioned earlier. On each chip, there are two in-line rows of tiny feet. The top view of the chip reveals a rectangle with a key designation at one end. The key is usually a notch, sometimes a paint dot or an indentation. When a chip is replaced, the keyway of the new chip must be placed in the same way the chip of the old one was. These DIPs will fit into either its socket or its holes in the printboard, backwards. Don't install the chip backwards!

The pins all have numbers on the Test Point Charts and on the schematics. To find pin 1, look to the left of the keyway, with the keyway at the top of the rectangle. In the C128, a lot of the chips are mounted upside down. The keyways are then at the bottom of the chip as it lays on the printboard. In those cases, starl your count to the right bottom and count up.

Whichever way the chip is positioned, count counterclockwise around the chip. The last pin on the chip will be across the keyway from the number 1 pin.

When you replace a DIP, whatever you do. make sure the key is in the same position as the original was before you put in the new one and energize the computer. The key is only a visual indicafor. The chip will fit into the socket or printboard holes wrong or right. Make sure it is right. You can double-check the key position on the chip location
guide. On the guide, note all the chips that are in stalled with keys at the top and the others with keys at the bottom.

As you test the feet, which are test points on the chip, you must be able to read the numbers on the chip. The numbers are not marked. You must be familiar with the numbering system as just described.

Tests with the C128 energized consist mostly of applying the vom probe to detect the voltage, fouching down on the test point with a logiv probe to find out what logic state the pin is in, and touching a test point with a low impedance probe on an oscilloscope. With the plug pulled and the C128 off, then the main test is with a low vollage continuity tester. The resistance between a pin and ground is the most popular one. Other resistance tests to check continuity between test points are also used.

The fastest way to find a pin on a chip is by knowing at a glance how many pins are on a chip. In the C128 there is a wide assortment of chips with different numbers of pins. The largest chips have 48 pins. The rest have less. Use the 40 -pin chip in Fig. $4-8$ as an example. Pin 1 is at the upper left of the rectangular top view. Pin 40 is opposite to pin 1 across the keyway. At the bottom left is pin 20. Across from it is pin 21. At the center of the chip on the left are pins 10 and 11. Across from them at right center are pins 31 and 30 .

With a little effort, you can quickly train yourself to find all six pins rapidly. Once you have your eye on those pins, then you can touch down on any other pin using those original six as reference. If you are going to make a lot of tests on different pins on the chip, then you can take a couple of toothpicks and stick one between 10 and 11 and another be-

Fig 4-8. Counting prns on a large chip can be marde easier with two toothpick indicators insented al focatons 10-11 and $30-31$
tween 31 and 30. That way you'll save a lot of long counting. The most you'll need to count on this 40 -pin chip is four pins. For instance, if you want to test pin 25, you can count from pin 21-four up. Pin 36 can be located by starting at pin 40 and counting four down. That way, if you are making a lot of careful readings, you won't accidentally touch down on the wrong pin.

Other chips you might have to handle have different numbers of pins emerging from the package. You could find small DIPs with 14 or 16 pirs. Other packages have 18, 24, 28 or 48 pins. The 48 -pin types are the largest in the C128. No matter what the number of pins, the general packaging arrangement, and counterclockwise numbering around the keyway, are all the same.

Printed on the DIPs, easily seen with the naked eye or with the help of a magnifying glass, are all sorts of servicing and replacement information. There are many parts houses in most neighborhoods where the C128 is found, such as Radio Shack. The markings on the chips in your C128 are helpful when it is time for you to purchase a new chup.

Note the markings on the chip in Fig. 4-9. All the marks have meanings. First of all, note the logo of the manufacturer. It is a familiar Commodore sign. Following the logo is the chip part number. The 6526
is the generic part number. Often the manufacturer will put his own part number on the chip instead of the generic number. Table $3-4$ is a list of all 63 chips in the C128 and their replacement part numbers.

With the number off of the chip you want to replace, any parts house clerk can cross-reference that number to the part number that they carry.

Next on the chip is the code date. This is suppesed to be a deep, dark secret but it is easy to read the date on most chips. This one says 4186. This means that the chip was manufactured in the 41 st week of 1986 . Others might be more tricky, but use your imagination. What you puzzle out will probably be correct. This code date is especially useful during the time the Cl 28 and its chips are under some sort of warranty.

There is one word of warning when purchasing replacement chips. If you are changing a chip try to get an exact replacement, that is, original manufacturers parts. Of course, if that is not possible then you must try another brand name. When you do install a replacement from a different manulacturer and the trouble still remains, or a new trouble starts happening, double-check the new replacement before embarking anew on the troubleshooting trail. Sometimes you can get a supposed exact replacement that is not exactly exact.

Fig 4-9 The markings on chips have meanings You must use theso markings when ordering roplacement chips

As you look down the list of 63 C 128 chips in Table 3-4, there are many TTLs in the 7400 and 741.500 families. There are a couple of CMOS chips in the 4000 family. Then there are a lot of chips not so easily found on generic lists. The C128 has the two MPU's, the 85012 and the 280, the 8721 PLA. the 8722 MMU, the two video output chips, the video controller 8563 and VIC 8564 , the two CIAs both $6525^{\circ} \mathrm{s}$, the 6581 SID, the ROMs and the RAMs.

When you suspect these chips and are seeking a replacement, your first stop should be at a Commodore service agency. Next you can try some of the national mail order houses. They often come up with odd chips.

The most expensive replacement chips you will encounter are the ROMs. When you purchase them you are buying software that is burnt into hardware. The ROMs contain the C128 operating system program and other vital programming. There is more about the ROMs in Chapter 7.

SOCKETED CHIPS

The C128 has some of its chips in sockets. For example, the two 6526 's and the 8563 under the metal video box shield. The four main ROMs are in sockets along with another empty socket that can hold a fifth ROM. SID is in a socket as is the 8722 MMU; this totals twelve sockets. All the rest of the chips are wired into the printboard. I must add that this is the arrangement in my C128. Different production runs could alter the layout.

The removal and replacement of the socketed chips is relatively easy. All you need is a few guidelines to ensure that the job will proceed in a safe and smonth fashion.

Chip Removal

You probably won't be able to help yourself, but a good rule to follow is: never touch a chip with your hands, body or clothing. Act as if you have a deadly communicable disease that you can kill the chip with. TTLs are not as sensitive as the MOS chips, but I'd treat them in the same way. That is because, on occasion, you might pick up what you think is a TTL and it turns nut to be a sensitive RAM MOS.

The reason for the antiseptic approach is that you can be carrying a static electric charge that could kill a chip by electrocution.

The weak, vulnerable time of an MOS is when it is loose. Any static spark into the chip at this time could very easily burst some of the insulated gates of the tiny FETs. On the other hand, when the chip is plugged into a circuit, it is no longer vulnerable. It can take a lot. When chips are shipped from a manufacturer, they are plugged into a piece of conductive foam. This effectively ties all the pins together, and the chip is no longer vulnerable. As you handle a chip keep it in its conductive foam pad till the instant before you insert it into a socket or the printboard holes.

The chip you remove from a circuit should be handled in a safe manner too. Often the chip is good and will have to be put back after testing and handling. Small chips, those with 24 pins or less, can be extracted and handled safely with the DIP extraction tool shown in Fig. 4-10. The tool is simply a specially built type of tweezer. It is made with two little lips that can be placed under the two ends of the chip. This allows you to gently rock the chip out of its socket. Once out, the chip can be placed on a conductive grounded surface that shorts all the pins to the surface. With all the pins shorted to ground, no static voltage can build up and kill an FET gate.

The DIP extractor tool comes with a small hole on its top. This is to allow you to screw a grounding strap onto the tool. The grounding strap is then attached to earth ground through a one megohm resistor. One important word of caution. Do not ever remove or insert chips while the computer is plugged into ac, whether it is on or off.

The extraction tweezer works well with chips of 24 pins or less. It can be used with the larger pins, two, if you take some extra care. The longer DIP bodies, especially the 40 and 48 -pin types, will be placed under physical stress if you use the same technique as you did with the smaller chips. The way around that problem is not to pull the chip all at once. Take one side at a time. Gingerly rock the chip ous of the socket. first tugging one side and then the other. That way the holding ability of the socket is gradually relaxed and the large chip will not ex-

Fig. 4-10. The chip extractor is the salest way to remove chips.
perience undue strain. Once again, after the chip is free, place its feet on a conductive surface.

Chip Replacement

During troubleshooting and repair, chips are usually in place when you begin. The preceding section went through chip removal from a socket. There comes a time in repair when the chips must be inserted back into the socket. Either a new replacement or the old, proven good, chip is to be reinserted. Just as much care must be exercised during the chip insertion as the extraction.

The chip to be inserted should be standing on a conductive grounded surface. You could use the grounded extractor tool if you are surehanded and careful. There are dangers though as the little feet are fragile and getting all the legs into the socket at the same time, without bending a leg or two under, is tricky. Therefore, it is advisable to use the chip inserter shown in Fig. 4-11.

The insertion tool in the illustration is typical of the devices that do this job. It has a conductive post sticking out of the top where a grounding strap can be attached. The post connects to all the metal parts

Fig 4.19 Chips are best inserters with a gadget that can hold and keep the chip grounded at the same ume
of the tool. There are two metal holders at the bottom of the tool that open and close. The holders are able to grasp a chip or let it go as you pull the post up and down. On the side of the gadget is a locking button. This can lock the holders and post so a chip can be held firmly. That way a chip will not be dropped accidentally during an insertion.

A feature of this inserter is a pin straightener, also seen in Fig. 4-11. The pin straightener is also grounded to the post. Often the little legs of a chip can be squeezed out of line. By simply pushing the
chip into the grounded straightener, all the legs are lined up properly. I usually make sure of the leg lineup on every chip I handle whether it looks like it needs it or not. Let's go through the chip insertion step by step.

To begin with, the chip should be standing on its own feet on a conductive surface. In this position the entire pinout is at the voltage level of the surface, which is zero volts or ground. Look closely at the pins. Are they all lined up nicely? Are any of them bent?

If any are, or just on general principles, pick up the chip with the grounded extractor tool. Push the chip, feet frist into the grounded pin straightener on the side of the insertion tool. Rock the chip gently till the pins are alb in the best in-line spacing. Then place the chip back on the conductive surface. Do not use the extractor to insert the chip. The inserter is better suited for the job, as you'll see.

Pick up the insertion tool. The post should be jumpered to earth ground. Pull the post out. The twin holders on the bottom will respond by retracting. Place the holders over the subject chip and release the post slowly. The holder will now come down snugly around the chip and ground all the pins. Note that the extractor had held the chip by its insulated ends. The inserter holds the legs instead and grounds them at the same time. Meanwhile, the chip had also been grounded on the conductive surface it was sitting on. You can now lift the chip off of the conductive surface. The chip remained grounded during the procedure. First on the conductive surface and then to the hotders of the inserter, the chip was never off ground and was never vulnerable to static sparks.

Once the inserter is in control of the chip. then the chip can be placed over its socket. The legs are carefully placed onto the top of the socket holes. Observe the keyway on the chip and on the socket. They must match so that the legs will enter the correct socket holes.

Once the pins are all lined up and making contact with the socket, pull the post up carefully. The holders will release the chip. Again the chip was not out in the open and vulnerable. The pins were transferred from the ground connections on the inserter to the circuitry connected to the socket. Then with the post still held up, press the inserter against the chip and seat it firmly. Do not press too hard-just enough for proper seating. Then remove the inserLion tool.

The extractor doesn't keep the pins at ground level. It grasps the chip at its insulated ends. It holds on to the plastic packaging material of the DIPs. The inserter, on the other hand, grounds the pins. Grounding is the trick to keeping the MOS chip intact during handling. If you must move or manipu-

Late the chips out of circuit, make sure you are personally grounded. Attach grounding straps to your wrist. Should you have to transport chips from place to place-even just across the room-keep the chips in a grounded condition (e.g. plugged onto the foam pad it comes boxed with). It is very trying to order a chip, have it arrive after a week or so, and then lose it to a shot of static electricity, as you carry it across the carpet on a low humidity day, when all you had to do was keep the chip grounded.

SOLDERED-IN CHIPS

Of the 63 chips in the C128, only 11 of them are in sockets. All the rest are soldered directly to the printed circuit board. This presents a problem when one or more of them must be removed or rein. stalled. The desoldering and resoldering of chips has been described as a job for an artisan, not the ordinary person.

Perhaps this is true, if you want to reproduce the same finished look that is accomplished by robot machines in a factory. However, as much as you take pride in your work, the polished look of a finished job does not influence the operation of the computer at all. The only important thing is replacing the chip aocurately so that the computer begins operating once again.

Desoldering

If you do find yourself faced with a chip soldering job, it is wise to consider taking the C128 to a good computer repair company and letting them do the honors. However, if you do feel confident that you can handle the chore, read on. I'll explain the technique.

It is not that difficult, but you must take your time and examine every move after yous make it. The potential for inducing additional problems is a large factor. It is bad enough to have one trouble in a C128. Great care must be taken to avoid causing a second and third complication by careless techniques.

The first step is to reach for the right soldering iron. Only the right one will do. Don't place a hot $100 / 400$ watt bench gun against the pritboard. It
is much too hot. Use the lowest wattage iron you have. One that will just about melt the solder. Thirty watts is the absolute maximum, and if you have an iron with less wattage use it. The iron should be one specifically designed for chips and sensitive transistors. They are on the market-some are battery operated and others use dc operating schemes. These are good to use when replacing MOS chips because the use of dc eliminates all the 60 Hz line voltage sine waves you get out of the house sockets. However, if you do use a conventional ac house current with an ordinary low wattage iron, then just ground the iron like you did your wrist. Of course, it goes without saying that the C128 should not be plugged into any house sockets during soldering operations. The C128 must be completely unplugged: power supply and keyboard-this means printer, disks and everything.

The trick to using solder on chip legs is control of the heat. Too much heat. even momentarily, or prolonged heat from a low wattage iron can kill a chip. Tou bittle heat does not let the solder form a good joint. A cold solder joint betweep the chip leg and the board can produce intermittent and otherwise difficult additional troubles. All surfaces that receive solder must be clean, and the tip of the iron should remain tinned all during the operation. Tinning an iron tip simply means keeping a thin coat of fresh solder on the tip. The tip can be wiped off with a piece of cloth periodically. Wipe quickly so the cloth is not on the tip long enough to start smoldering.

Heatsink techniques are a must. The best heatsink is to grasp the lead between the connection on the board and the body of the chip with very skinny long nose pliers. That way as you apply heat to the connection, the heat runs up the leg to the pliers and is tapped off before it can get to the body of the chip.

If you are not adept enough to hold the iron, the solder, and the pliers all at the same time, then an altemative heatsink can be rigged with a piece of lamp cord. Attach a small clip lead to the cord. Clip it onto the spot where the pliers would have been holding. The rest of the cord can hang loose. The heat will always take the path of easiest dissipation.
which is the skinny plier nose or the lamp cord rather, than the tiny leg on the chip. It is a good idea to ground the pliers or the lamp cord too. This prevents the connections from developing any undesirable static buildup.

As mentioned, a solder tip is easily kept clean and tinned by wiping it with a cloth or paper towel. Wipe quickly to avoid charring the towel. The solder must be rosin core, and it is advisable to use type $60 / 40$ (tin to lead). It melts at 371 degrees Fahrenheit.

Desoldering a chip is not too hard, especially if you are sure it is bad and you do not care if it is damaged. Even if you do care, the technique when properly performed, is easy. The first step is to position the board in a convenient place, where you are not off balance while working. The top and the bottom of the board should be free and clear of obstacles. A good bright bench lamp with a magnifier would be extremely helpful. Get into a comfortable position so that you are not straining. Then the job can begin.

Note the number of connections. The job will consist of freeing each connection in turn and removing all excess solder. Attach the lamp cord heatsink to the first connection-take them each in turn. Don't rush. Realize that it is going to take time. Touch the hot iron to the connection. Most of the heat that is melting the solder flows into the lamp cord. Jiggle the chip leg with a solder pick and wipe the connection. Keep doing that patiently till the pin is free. It will take a number of picks and wipes till you get the feel of it. When most of the solder is removed and the leg is free, go on to the next connection. Pin after pin is freed in this way. Keep working till each individual pin is free. Then lift the chip off the board. Should some solder drip across the board while you are working, stop. Clean up the drip before proceeding.

There are many soldering devices available that will make the job a bit easier. One device is a solder sucker. It is a soldering iron complete with a rubber suction ball. Place the solder sucker over the thole, with the ball squeezed, and as the solder melts let the ball inflate. The salder will be sucked into the ball system. With a little practice, the solder sucker will speed up your desoldering time.

Ar experienced technician, when he is sure the chip is defective and he just wants to get the chip out of there, uses less care. He simply applies heat and pries. After awhile the chip pops out. Remember though, he is experienced and has taught himself shortcuts. I wouldn't advise moving so quickly till you have successfully replaced a lot of chips.

Resoldering

Once the old chip is out, then clean up the holes in the printboard. Use a bit of heat, some wiping. and pick out all the excess solder. All you want left are tinned open holes. The new replacement then can fit nicely into the holes. With the new chip in place, apply a drop of properly heated solder to each connection. After checking the connections for possible shorts or opens, then the job is done. Just be sure you don't put the chip in backwards; it will fit. and then you'll have the entire desolderingresoldering to do all over again.

As you can see, the tough part of the job is the patient loosening of each lead and the preparation
of each empty hole during the desoldering process. It is good technique to never have to desolder the same chip twice. Often a particular chip will dic repeatedly due to a manufacturer's design error. The chip, over the life of the computer. fails over and over again. You will do a lot of muttering if you find yourself desoldering and resoldering the same chip every so often. What can you do? There is an easy solution. You can avoid the unpleasant chore after the first replacement. Make it a rule in your repertoire of soldering techniques to always install a socket whenever you have to remove an unsocketed chip. That way you'll never have to resolder that particular chip again.

Follow the same resoldering instructions for installing a socket as you would for a chip. A bonus for installing a socket instead of the chip directly to the printboard is, you need not worry about hurting the socket as you solder it in place, like you would with a chip. You still want to use as little heat as possible though, since the printboard is still sensitive, as well as are the adjoining chips.

5. The LSI Chips

If you look down at the exposed printboard of the C128, further revealed with the chip location guide of Chapter 3), then you'll see: two large 48-pin DUP: four almost as large $40-\mathrm{pin}$ DIPs; one DIP with 28 pins. Should you remove the metal shield with the rows of ventilation holes, you'll find two more of the 48 -pin variety. These nine chips are classed as Large Scale Integration. LSI chips contain at least a thousand individual microscopic circuits. These germ size circuits that are placed on the chips are, under ordinary circumstances, inaccessible to us humans. Perhaps a microbe could crawl in and out of the circuits, but we can't get to them to run tests. Furthermore, even if we could somehow run a voltage or scope test and find a bad circuit among the thousand or more circuits, there would be no leasible way to remove the defective component and install a new replacement.

Therefore, these thousands of circuits on a chip, from a troubleshooting point of view can be thought of as one. When a chip is deemed bad, it is replaced, not repaired. Fortunately there are a number of
techniques that can be used to determine if a chip is good or bad. First of all, the pins that stick out are all test points. A probe can make definitive readings that can be compared with what is supposed to be on the pins. Secondly, you can contact and test the registers of the circuits in the chip by writing to them with a POKE or reading them with a PEEK.

If you consider the number of circuits in comparison with the number of pins, then there could be 1000 circuits accessed by 40 pins. This means. on an average, one pin connects to at least 25 separate circuits. Each one of the tiny circuits could have 10 input-output leads. That makes each pin on the IIIP a connection to 250 internal nodes. While this statement has many variations and complications, the point is: all the circuits inside the chips exist in a different microscopic wortd. Therefore, during troubleshooting and repair, forget the internal circuits of the LSI and larger chips, and consider each chip as a black box with 40 or so test points available to your vom, lagic probe, scope and continuity tester. Only the original designer and manufacturer
know what is inside the black box down to the last detail.

Fortunately, to service the C128, it is not necessary to learn all there is to know about its 1 SI chips. You do not need to know the detailed construction secrets of the chips. The servicing skills required are in general those techniques that are used to repair any electronic circuit. The servicing techniques are those that specifically apply to the chips in the C128. In this chapter, there is an overview of the nine chips: two 6526° s, the 6581, 8502. 280, 8722 . 8721,8564 and 8563 . This is an acquaintance you'l need in order to approach the chips. Later in the book is a full chapter devoted to each of the chips. replete with servicing techniques.

THE MICROPROCESSORS

The C128 is three complete computers in one, and they share some of the circuits. The C128 and C64 modes share the 8502 MPU . Each mode uses the 8502 as its MPU-at different times. Buth modes cannot run at the same time, but you can switch from one mode to the other quite easily. The 8502 is an upgrade of the 6502 found in the VIC 20 and the 6510 in the C64. All three MPUs use the same instruction set. Commodore purposely chose to go this design route so that as much software as possible will be compatible in the three machines.

The 280 MPU is used expressly for CP / M duty. It is brought into play when you place a CP/M disk in the drive and start up the C128. When the Z80) goes into action, the 8502 is placed on hold. The CP/M software library has tens of thousands of programs that you can use with the Z80) doing the heavy work. The $\mathbf{Z 8 0}$ and the 8502 , even though both occupy the C128, have very little in common.

The two processors share the same bus lines at different times. It's as if two strangers use the same bedroom, but one works graveyard and the other works daylight. They never contact each other, but do share the same facilities. The 8502 is really the main occupant of the C 128 and the bus lines are designed to handle its input-output directly. The 780 can't directly use the lines designed for the 8502 . Therefore, the 780 has to use a special interface circuit when it takes over the bus lines while
the 8502 is not operating. All this will be discussed in more detail in Chapters 12 and 13.

As MPU is commonly referred to as the heart of the computer. It is called the "heart" because it connects and works with all the rest of the imporlant chips. Like a heart it has no brains but plenty of strength. The brains of a computer are programs in the ROMs. These programs are known as the operating system. The MPU can be likened to a main telephone exchange. It is connected to all the registers in the chips of the memory map. The memory map is like a telephone directory. In the C128 128 K memory map, there are 131.072 addresses. The MPU is connected to all of the addresses.

The MPU has four types of lines that connect to the chips with the addresses. They are the address lines, data lines, control lines and special I/O lines as seen in Fig. 5-1. The MPU in all computers is vital. It performs the computing. Without an MPU. a computer is not a computer. You can design a computer and leave out any of the other chips. You cannot leave out the Processor and still have a computer. At this time let me introduce the general duties of the MPU. They might not have much meaning at this stage, but the duties will be clearer as we go.

The MPU, first of all, has the job of providing and requesting data. Figure 5-2 illustrates both of these johs. The reason it requests data from the rest of the computer is to process it. The data is obtained from places like the RAM, ROM and the CLAs. The MPU will send a message to one of these places and request data. The data is sent back to the MPU over the data lines. The MPU can then process the data and send the finished data back to one of those storage or I/O chips just mentioned. How does the MPL alert a data holding area that it wants data?

The message that the processor sends to a memory map location is an address, like a telephone number. The address goes out over 16 address lines in either the 8502 or the 780 , whichever one is m charge of the computer. The address lines are shown in Fig. 5-3. The 16 lines carry the address. Each line can send a high voltage or a low voltage. A high is a binary 1 and a low is a binary 0 . The address consists of voltages that mean I's and 0 's. The

Fig. 51 The 8502 processor has lour types of lines that connect to the rest of the computer chips. They are the address. oata, I/O and control lines.
address consists of 16 bits. One address bit is transmitted out over each address line. The address lines are one way avenues. The bits go out but none come back, just like when you dial a friend on the telephone. Their number only goes out, it does not come back.

Sixteen bits can form 65,536 different patterns of 1 's and 0 's. Each different pattern dials up a different location. Because both the 8502 and the 280 only have 16 address lines, and if they do not get any additional help, then they can only address 65,536 (64 K) of the total 131,072 (128 K) locations in the C128. But they do get help. The 8721 PLA chip and the 8722 MMU chip pive the MPU address lines a hand. With their help, the 128 K memory map is broken into two 64 K sections and the MPUs are able
to address each 64 K section in turn. This is discussed further in this chapter and throughout the rest of the book.

When a processor in the C 128 needs data, it outputs, on its address line, a set of 16 bits that opens up a location just like your telephone line is opened up when someone dials your number. As soon as the C128 location has opened the data in that location, then a copy of the data in that location moves out on the data bus, as shown in Fig. 5-4. The data then travels to the processor that called for it. If the 8502 called for the data, then the data traverses the data bus and enters the 8502 without further ado. If the $\mathbf{Z 8 0}$ had called for data however. then the data travels the bus to the $Z 80$ area. There, the data is met by an interface consisting of a latch

Fig. 5-2. The address lines have the job of going to a location and opering if up so that the data in the tocation can be accessed. The data then can travel between the MPU and the location
chip and a buffer chip. The data moves through the two chips and from there can enter the 280 .

Once inside the processor, the data is manipulated. An MPU is capable of doing somse limited mathematical and logical processing of the data. The nature of this work is covered in Chapters 10. 11.

12 and 13. Once the data is processed, then the MPU is ready to send the data back to storage or to an output peripheral.

The MPU then addresses the location where the data is to be sent. The addressed location is activated and opened by its own combination of address

Fig. 5-3 The 16 address lines are able to carry 65.536 dillerent combinations of highs and lows.
bits. The MPU then sends the processed data out over the same data bus line. Note that the address bus is one way from MPU to location. The data bus on the other hand is two way. It moves data from location to MPU and then after processing back to a location. If the location is RAM, then the data is stored. If the location is ROM then the data in ROM is read. When the location is an $1 / 0$ port then the data is readied and output to a peripheral.

The two C128 processors are both eight-bil. Eight-bit refers to the number of lines in the data bus. Remember that the address bus is 16 bits wide. Eight-bit also refers to the usual size of the RAM. ROM and I/O registers. The chip registers are eight-
bit (one byte) wide. In the eight-bit processor, the data is usually moved in byte-sized pieces.

The rest of the lines in the processors, exchuding the address or data lines, are called the "control bus." They are, however, not really bus lines because they are all individually operated and all do different types of jobs. They are, for example, the reset line, clock lines, the R/W line, intermpt lines and others. They will be covered in more detail in Chapters 12, 13 and others.

This explanation briefly describes what the MPUs in the C 128 do as they work through a program. In old time "computerese," the job has been known as the fetch and execute cycle. When the cy-

Fig. 5-4 The eight data lines are able to transpon 256 diflerent binary bit combinations.
cle breaks down, then the computer needs troubleshooting and repair services. It is a must for you to understand this hardware layout and general operation to apply the fix to the majority of repairs. Your ability to write programs will not aid very much here.

THE 6526 COMPLEX INTERFACE ADAPTERS

The two CIAs are mounted on opposite sides of the board. Ul on the right side of the board is mounted near the port for the keyboard to plug into. U1 is placed there since its main job is to apply the ASCII bits that are generated when you strike keys, from the keyboard into the digital circuitsspecifically the data bus. The ClA on the left side of the board, U4, is mounted there to handle the ports over on that side. For instance, U4 is the I/O port for the nearby user port, as Fig. 5-5 demonstrates.

The CIAs can act as either an input or an output chip. They interface inputs such as the keyboard
and joysticks, input-output machines like the cassette and disk drive, and output-only units like a printer.

The CIAs connect to the MPU through the same data lines that go to all the other locations in the computer. The CIAs have their own locations, like RAM and ROM although not nearly as many. When either the 8502 or the 280 desires to access a CIA, it outputs the CIA address and is connected directly.

The right side CIA is almost exclusively devoted to the keyboard and the two control ports just above the keyboard. A CIA is equipped with 16 output pins. divided into two sections of eight pins each. The keyboard uses all 16 pins to input your key strikes. The control ports each need four pins to input their voltages, as seen in Fig. 5-6. There is no conflict, however, because both of them are open circuits when they are not in use. Since the control ports are not usually used while the keyboard is, they can share lines and they do. While the keyboard is not

Fig 5-5 CIA1's main job is to interface the keyboard rows and columns to the MPU CIA2 performs the liO dulues required to intoriace external paripheral devices to the MPU

Fig. 5.6 CIA1 also handles the foystick inputs over the same lines that the keyboard uses.
being used you can use the joysticks. Just avoid using them both at the same time.

When you hit a key on the keyboard you are shorting out a row and column. Internally the keys are wired in a block composed of vertical rows and
columns as seen in Fig. 5-7. There are eight rows and 11 columns. This produces 88 row-column intersections where a switch can be placed. In addition to the 88, there are also four more singly wired switches for the RESTORE. 40/80, SHIFT LOCK

Fig 5-7 This is the schematic dragram of the keyboard in yous C128 When a key is pressed erther a switch like the RETURN koy is closed or a row is shonted to a column as seen in the bottom right inset.
and CAPS LOCK switches. There are 92 keys on the keyboard including the numeric pad that duplicates the numbers, the positive sign, the negative sign, and the decimal point. The ENTER key on the pad duplicates the RETURN key on the main board.

When an individual switch is shorted then the circuitry generates a character inside the computer. The keyboard CLA as shown in Fig. 5-5, is the device that transfers the shorted switch identity to the MPU so that the desired character is generated.

The CIA on the left side of the board. performs the same kind of duty for other external devices like the User Port and the Serial Bus. These ports are able to connect to a printer, a disk drive, a telephone modem or even another computer. With additional software, the CIA will be able to send or receive from a large number of devices.

The 40 pins of the CIA are shown in Fig. 5-8. There are 24 pins to handle data. There are eight pins that connect to the internal computer side and

Fig 5-8 The ClAs havo address, data Dus connoctons, conerol lines and two eight. bit poris

16 pins that hook up to the external peripheral side. The 16 pins as mentioned are broken into two separate port sectirns of eight pins each. These ports are discussed in detail in Chapter 19.

The rest of the CIA pins are used to address the chip and control it. There are five lines into the ClA for addressing purposes. The CIAs only conLain 16 locations-unlike the RAM and ROM chips that could have thousands of locations on a chip. The five address lines handle contacting the 16 CIA locations easily.

In addition to the normal I/O duties that the CLAs perform, they also have a 24 -hour Timu of Dray (TOD) clock which can be set for bouth AM and PM. There is also an alarm for each clock. You can set the time and alarm with a few program lines.

For some sophisticated computer operations, special timing mechanisms are required. In the CMA. there are two such circuits called 16 -bit interval timers. They are said to be independent and linkable. These are characteristics needed when these timers are used. There is more detail about these timers and the TOD in Chapter 19.

Another feature of the C1As is a special eightbit senal I/O shift register. The term $1 / 0$ means input-output. The CIA has its 16 output pins broken into two 8 -pin ports. Because an eight-bit port outputs eight-bits at a time, the eight-bits are all moving at the same time abreast, and that is called parallel output. This bit movement is in contrast to a series of bits that are moving out of one pin, in single file. The single file movement of bits out over one line is called serial outpoul. You have probably heard the terms parallel and serial concerning the transfer of dipital bits of information. Figure 5-9 contrasts this type of data movement in the CIA.

The CIAs each have (in addition to two eightbit parallel ports) one serial I/O port using one pin. In the chip. consected to the pin, are circuits that make up an eight-bit serial register. The eight-bits that the register can hold will leave or enter through one end of the register, get shifted from bit holder to bit holder in single file, and exit or enter the chip at the other end of the register. Chapter 19 has more detail on this operation.

The ClAs can also act as the middieman during
peripheral-computer handshake operations. The handshake is so named because, as a data transfer operation, many verification checks of the data occur while transferring. The handshake is a complicated procedure whereby the computer can either receive information from a peripheral (read) or send information to a peripheral (write). The handshake is vital if the data is to be transferted error-free.

The handshake is a check and double-check between the computer and the peripheral. If we endow computer and peripheral with human characteristics, then the handshake will proceed as shown in Fig. 5-10. For instance, a peripheral can be attached to a CIA with information it wants to transmit. The peripheral says over the lines, in digital code, "Hi there 8502, you old MPU. I have some data for you."

The 8502 receives the message via the CLA. The 8502 replies through the CIA, "I hear you calling. All is clear, send the data."

The peripheral promptly sends the data over the parallel lines and waits. The data enters the CIA, passes through the CIA and exits into the internal data bus. The data then travels the data bus and enters the 8502. The MPU notes the data entry into its registers and calls to the peripheral, "Okay there peripheral, the data is received. I'm ready for more."

The peripheral thus sends information to the MPU and is able to continue sending until all its data has been transferred correctly. Althrugh the characterization of the two devices is exaggerated, the procedure is essentially correct. The CIA chapter has a description of the electronics that handle the handshake operations.

THE VIC AND VIDEO CONTROLLER CHIPS

Under the metal shield are the two 48 -pin video output chips. They are both nunning all the time, but do not necessarily output the video. They do output a border and a display block. The one that is chosen to run will output the video.

The 8564 VIC is simply an upgrade of the previous VIC chips found in the C64 and the VIC-20, as shown in Fig. 5-11. Like its predecessors, one out-

Fig. 5-9. The Clas are equpped with two forms of ports. First are the two paraltel eight line ports. and second is a single frne serial port.
put is a display block containing 40 columns across and 25 rows down to total 1000 character spaces. as shown in Fig. 5-12. The 8564 sends the video in two pieces from two pins called SYNC/LUM and CHROMA. These simnals are applied to the RF Modulator box. When you are in the 40 -column mode-whether it is the C128, C64 or CP/M-you are using the output from the 8564 VIC.

The other 48 -pin chip in the metal enclosure is the 8563 Video Controller. It is a new chip and provides other sorts of video output.

The 8563 sends video in four pieces. These parts of the total video exit out of four pins, as shown in Fig. 5-13. The signals are called R, G, B and I. The R. G and B obviously mean red, green and blue. The I stands for intensity. Intensity has to do with

Fig. 5-10. The CIAs are the interface units that permit a "handshake" operation between a peripheral and the MPU.

Fig. 5-11 The 48 -pin VIC in the C128 is an upgrade of the 40 -pin VIC in the C64
fuminance or brightness. The four signals are sent to some buffering circuitry in a smaller chip and are then sent directly to the RGBI output port. The important difference between this video output and the VIC's output is the number of columns in the display block. The 8563 's output has 80 columns with 25 rows totaling 2000 character blocks on the TV screen.

The VIC chip contains all the capabilities of its predecessor 6567 VIC chip used in the C64. This allows it to operate when the C128 is in the C64 mode. These capabilities include sprites and highresolution bit-mapped graphics. In addition, the newer 8564 VIC has some extra features. These will be described in detail in Chapter 20. The features
include extended keyboard scanning to handle the extra control lines in the Cl28 keyboard, an ability to run at a faster 2 MHz speed rather than only 1 MH_{2}, and other things. VIC is the chip that generates the clocks for the C128 in the same manner as it did for the C64. Additional clocks are needed in the C128, and VIC handles this. A 1 MHz clock for the bus and $1 / O$ operations, and a 2 MHz clock to regulate some operations (as well as the processor when it is in a 2 MHz mode) are in the VIC. A 4 MHz clock to take care of the $\mathrm{Z80} \mathrm{CP} / \mathrm{M}$ program running is also in the VIC.

VIC has a number of registers whereby all of its operations can be controlled by writing to the registers and changing register contents. Inciden-

Fig. 5-12. VIC controls the TV display. It generates the video to show 1000 litte characier blocks. In dynamic RAM there are 1000 eight-bil locations assigned to store code for the characters in these blocks Also, 1000 four bit tocatrons are assigned in the color RAM to determine the colors of the Dlocks. Each block needs 12 bits of code to produce a character in color.
tally. VIC can be tested for some defects by reading and writing appropriate bits for the registers. Sample techniques of this sort are found in Chapter 20.

The 8563 Video Controller is a text display chip. The 80 -column format it provides is very useful for word processing, spreadsheet analysis and the like. The 80 -column mode is used more to produce text than graphics.

The 8563 has two extemal registers and 37 internal registers. The extemals ane called the address register and the data register. By writing to the address register, and reading and writing to the data register, you can access the 37 internal registers.

The 37 internal registers are used to sel up the mode of the registers. For instance, in the U.S. the video standard is called NTSC. In Europe the sys-
tem standard is called PAl. The set-up registers set up the C128 to use the desired standard or other standards.

The display registers place and move the text bettering on the TV screen. These 37 registers as well as other details are covered in Chapter 21.

The 8563 chip sends and receives a lot of signals. First of all, the 8563 must keep in constant communication with the MPU with which it is operating. There are nine separate types of signals that it uses-including bits on the data bus, chip selects, register select, R/W and others. Five types of signals let the 8563 work with its memory chips. Then there are five types of signals that the chip uses to get its 80 -column display up on the TV screen. These include the videro dot clock, the character clock. horizontal sync and the RGBI output. The

Fig. 5-13. The 8563 Video Controller generales 2000 litle character blocks in the display. It shows 25 rows hke VIC, but 80 columns. VIC only shows 40 columns.

8563 register map and all of these signals are discussed in Chapter 21. They are important test items when an 8563 is suspected of causing trouble.

THE 6581 SOUND INTERFACE DEVICE

The SID chip is the 28 -pin chip found just to the right of the two video output chips in the metal en. closure. SID is a companion chip to VIC. Both types are used in arcadethome video games. While VIC puts graphics on the screen. SID provides the sound effects. If you are using a monitor that does not have
any audio output, then the SID would be useless to you unless you hook up a separate audio arrangement.

The SID, shown in Fig. 5-14, is a sound effects generator. It is designed to be driven by circuits in the 6502 MPU family of which the C128's 8502 is a member. Note that its number is 6581 . The 65 indicates the family.

The SID is an advanced computer music synthesizer and sound effects chip. If you are musically knowledgeable, you'll recognuze the following qual-

Fig. 5-14. SID is a sound effects genorator with address and data lines, control lines and audio input and outpur.
ities. First of all, the SID is able to provide a wide ranged high-resolution control of pitch. Fitch is produced by controlling the frequency of an audio output. There are three audio oscillators in the SID. They are called wices. Each voice can be used by itself or in combination with the others as a trio. By controlling the frequency of the oscillators, you can control the pitch of each voice.

In addition to pitch control, the SID permits control of tone color. This is accomplished because the oscillators produce four waveforms at the tuned frequency. Each waveform has its own distinctive harmonic content. By judicious choosing of the individual waveforms, you can control the tone color of th sound.

Besides controlling pitch and tone color, you can instruct the SID's volume level. Each voice has what is called an envelope generator circuil. When the program instructs it to. the envelope generator creates an envelope waveform that controls the amplitude modulator. All this creates the desired amount of volume. Lastly, there are programmable filter circuits that further generate complicated, interesting tone colors.

All of these functions can be programmed directly into the SID). Programming these functions also is an excellent test technique to determine which SID systems are working and which ones are not. The electronics and test programming are covered in Chapter 22-a full chapter on SID. You'll
leam about the 29 eight-bit control regnsters that produce the sound effects for the C128.

THE PLA AND MMU

The 8721 Programmed Logic Array chip, near bottom center on the printboard, and the 8722 Memory Management Unit chip, near right center, are both 48 -pin DIPs. They address the locations of the memory map. Both the 8502 and the $\mathbf{Z 8 0}$) are eightbit MPUs. As is customary, each one sends 16 address bits. Sixteen address bits are only capable of dialing up 64 K locations. In the C 128 , there are 128 K RAM locations alone. Then there are 32 K of BASIC ROM, 8 K of Kemel operating system ROM. 4 K of screen editor $\mathrm{ROM}, 4 \mathrm{~K}$ of character set ROM . a possible extra 32 K of internal ROM, another 32 K of external ROM, plus a number of additional register addresses in assorted chips. If the MPU can only address 64 K , then how are the rest of the addresses contacted? With the help of the PIA and MMU.

The PLA performs a chip select function. For example, there are four large ROM chips in the C128 plus a fifth empty socket that one more ROM can be plugged into. All five ROMs are wired up in the same way. They are all connecled to the same MPU address lines. These lines are able to address all the locations in each chip. If there are 32 K locations on
a chip then all of the chips will have the same address numbers. If a number is dialed up then all five chips will be contacted at the same time. In order to pick out only one chip to address, that chip will have to be selected. This is where the PLA comes into the picture.

The PLA receives address lines A15-A10. From the bits on these lines, the PLA forms a chip-select signal. A line connects the PLA to each and every chip that must be selected. Over the correct line goes the chip-select bit that the PLA generated from the A15-A10 address lines. The chip selected tums on while the rest of the chips stay off.

Besides selecting a ROM among the five main ROM circuits, the PLA selects VIC, the color RAM chip, the character RAM, and other things. The details on the PLA will be covered in Chapter 14.

The MMU works along with the PLA. While the PLA handles the chip selections, the MMU controls the management of all the different modes in the computer. The MMU can be programmed. Therefore, in addition to being hooked to the address bus, the MMU is also connected to the data bus, seen in Fig. 15-7.

In the MMU chip there are a series of programmable I/O type registers. These registers have their own addresses on the C128 system memory map.

Table 5-1. The MMU selects the bank number to be used al any particular program line. It chooses from among the chips that afe residents of the memory map.

Bank Number	Bank contents
0	RAM Set 0
1	RAM Set 1
2	RAM Sot 2 (not in C128, uses RAM Set 0)
3	RAM Ser 3 (nor in C128, uses RAM Set 1)
4	RAM Sel 0 , wo, Functional ROM (emply socket)
5	RAM Set 1, NO, Functional ROM (emply socket)
6	RAM Set 2, WO. Functional ROM (emply sockel)
7	RAM Set 3, VO. Functional ROM (emply sockel)
-	RAM Set $0, N 0$, Canndge ROM
9	RAM Sel 1, vo, Canridge ROM
10	RAM Sel 2, HO, Canndge ROM
11	RAM Set 3. VO. Carridge ROM
12	RAM Set 0, UO, Kernel ROM. Functional ROM Low
13 14	RAM Set 0, VO, Kernel ROM, Cartridge ROM Low
15	RAM Set 0 , UO, Kernel ROM, BASIC ROM

On the C64 memory map the MMU does not exist. The 8502 in the C64 mode acts just like a C64. In the C64 there is no need for the M.MU. The 16 address lines of the 8502 with the aid of the PLA can handle all necessary addressing duties. Chapter 15 goes into detail on all these registers. For now, let's take a quick look at the MMU in the C128 mode.

When the computer is in C128 mode, the defaull memory arrangement set up by the MMU registers lists 16 banks. Each bank uses 64 K of available address space. That way the 8502 or 280 is able to address whatever bank is in use at that instant. Table 5-1 shows the 16 banks and what combinations of RAM and ROM are assigned to each bank. An interesting note is, banks $0-3$ are each able to address 64 K . That means the C128 is actually able to address 256 K . However there is only 128 K of RAM in the machine. Perhaps Commodore has some future plans for the additional 128 K of addressing potential. I am sure that sumebody, maybe a
third party supplier, will come up with a use for this unused potential.

The MMU is able to allow the 16 -bit address bus to address a lot more than the 64 K it can only address without help. When you write a BASIC program there is a BANK command that lets you switch from one bank to another with a BANK n, where π is a digit between 0 and 15 .

The MMU, besides having these $1 / 0$ address control registers also has lines that can detect if a C64 cartridge is in place, if a fast serial disk is going to be used, and whether the 40/80 key is up or down. In addition, the MMU has the responsibility of controlling which MPU, the 8502 or the 280, is in control of the computer.

The MMU is a main chip in the C128. It gives the eight-bit MPUs addressing abilities only found in MPUs with many more address lines. It can also step out of the way and let the C128 act like a C64.

6. Dynamic Random Access Memory

IIn the lower left-hand comer of the printboard are two sets, eight to a set, of Dynamic Random Access Memory chips, called DRAMs. The generic name for each chip is 4164 . Each set contains 64 K of IDRAM. They total 128 K of DRAM. They are the reason the computer is called a C128. As mentioned, the MMU is able to address 256 K of DRAM. If an upgrade is made in the future, then this computer's name could be changed to the C256.

Three more RAM chips in the machine are not connected with this group of 128 K . Two 4416 chips are under the metal video enclosure, near the 8563 Video Controller. These two DRAMs are not in the C128 or C64 memory maps. They can only be accessed by going through the 8563. They operate with the 8563 and are an important part of the 8563 operation. They will be discussed in Chapter 21 along with the 8563 .

One more RAM chip is in the C128. It is a 2016 and is found near the bottom of the board just to the left of the PLA. The 2016 is the Color RAM chip
and works closely with VIC. It will be covered later in this chapter.

Let's examine the DRAM in Fig. 6-1. It is a 16 -pin MOS chip. It contains 65,536 individual bit holders, as illustrated in Fig. 6-2. The 65,536 is rounded off and called 64 K . Note that there are 64 K single bit holders on the chip. It takes a set of eight of them to supply 64 K bytes of memory.

To get specific, in computer chips a " $\mathrm{K}_{\text {" }}$ " while loosely thought of as a thousand, is actually 1024. Therefore, if you multiply 1024 times 64 , you get 65,536 . The reason 1024 is chosen is because computers do all their figuring in powers of 2 . The closest binary multiple to 1000 is 2 to the 10 th power. Counting this way the numbers ascend thus: $1,2,4,8,16,32,64,128,256,512$, and 1024 , which is 2 to the 10 th power. If you continue the progression, you'll encounter more familiar computing numbers, 2048 (2 K), 4096 (4 K), 8192 (8 K), 16384 (16 K), 32768 (32 K) and 65536 (64 K). Table 6-1 summarizes all these numbers for you. It is a good

Fig. 6. 1 U38 inrough U53 aro the Dynamic RAM chips holding the 128 K of memory. The chips are known as DRAMs. This illustration is a Test Pount Chan You can test these puns one at a time with a logic probe All of the chips have the same logic states on their respective pins.
idea to remember these landmark numbers up to 64 K , and even above, as you could find them very useful during troubleshooting and repair.

The term RAM, for Random Access Mrmory. is a holdover from before the microcomputer. The D in DRAM simply means dynamic. The RAM part is not really an accurate description. The way computer professionals view RAM is read/write memory in contrast to ROM which is read only memory. ROMs are covered in the next chapter.

A RAM chip is a little warehouse where you can store bits. It works with other active chips and provides a place where the chips can place bits aside and then recall them. When a busy chip stores bits
it does so by writing the bits over to the storage area. When the chip recalls bits it does so by reading the locations where the bits are waiting.

Two main types of RAM exist: the static type and the dynamic type, called DRAM. In the C128. there is one static RAM chip, U19- the 2016 color RAM. All of the rest of the RAMs are DRAMs: the 16 4164's in the 128K group and the two 4416's, U25 and U23, that provide 16K of DRAM for the Video Controller.

STATIC RAM

In the C64 the VIC works with a static RA:M chip, a 2114 that is used to store colors, as shown

Fig. 6-2. These DRAMs are organized in one-bil registers with 256 columns and 256 rows This $\{0 t a t s$. 65,536 ingividelal registers on a chip
in Fig. 6-3. In the C128, the newer and larger VIC also works with a color RAM chip: U19 a 2016. The way that the VIC and the 2016 operate together is discussed in Chapter 20. The two color RAMs, although quite different in makeup, operate in much the same way.

The 2114 is an 18 -pin DIP. The 2016 is a 24 -pin DIP. The 2114 has the bit holders organized in a 1024×4 format. Therefore, 1024 individual locations are built into the chip. The 4 means that four bit holders are at each location. Four bits is half a byte and is accordingly called a nybble. Fisure 6-4 illustrates the arrangement as a tall, skinny four-bit. wide structure. Each nybble location has an internal address. The 1024 addresses are numbered 0 through 1023. Zero is the first address and 1023 is the last.

Each bit holder (four to an address) is able to store a high voltage like +5 volts or a low voltage. like zero volts. The lighs and lows are code for 1's and 0's. The highs and lows are stored in fip-flop circuits. Each bit holder is a lip-Rop circuit in a static: RAM. Static RAM uses flip-flops. but DRAMs use other circuits that we will get to later in the chapter.

This tall skinny memory layout is called the memory matrix. Each location is called a register. In this 2114 the registers are four bits wide. The address bus is connected to the rows of addresses from 0 to 1023. The data bus is connected to the four bit holders. The bit holders could be called 1)3, D2, D1 and IOO. All of the 1024 locations have therr D3 fip-flops connected to the D3 data bus line. The D2 lip-lops are all connected to the D2 data bus line, etc. The signal on the address bus will deter-

Table 6-1. Good Numbers to Remember.

Powers of 2	Decimal Count	Blis Required
2	0.1	1
4	$0-3$	2
8	$0-7$	3
16	015	4 (nybble)
32	0.31	6
64	0.63	7
128	$0-127$	8 (byle)
256	0.255	10
512	0.511	11
$1024(1 \mathrm{~K})$	$0-1023$	12
$2048(2 \mathrm{~K})$	0.2047	13
$4096(4 \mathrm{~K})$	$0-4095$	14
$8192(8 \mathrm{~K})$	$0-8199$	15
$16384(16 \mathrm{~K})$	$0-16383$	16 (2 byles)
$32768(32 \mathrm{~K})$	0.32797	
$65536(64 \mathrm{~K})$	0.64535	

mine which row of four dip-flops can place their data on the data bus. Figure 6-5 illustrates this idea.

When one of the registers is addressed, then it activates the connections between the data bus lines and its bit holders. A copy of the highs and lows in the bit holders will pass over the data lines.

The 2114 in the C64 has ten address lines A9-A0. Ten address lines are able to bring 1024 possible combinations of highs and lows to the chip. Since there are exactly 1024 rexisters in the 2114. the ten lines are able to bring a separate address for each location in the chip. That is how the memory matrix of the 2114 can be addressed in the C64.

In the C128, the same type of color RAM chip is needed, except that there are two banks of 64 K in the 128 K of DRAM. The color RAM still only needs four bit bolders to a register, but it requires 1024 of color RAM for each bank. The number of

Fig. 6-3. The C64 works with a 2114 static RAM chip Note it only has four data bus lines, D3-DO. This is a color RAM It only has four bits in a register. This can produce 16 different codes to generate 16 character colors

Fig 6-4 The 2114 is organized in four-bit nybbles the internal addresses of the nybbles range from 0.1023.
four-bit holders must be doubled. Therefore a new static RAM chip has been employed with 2048 fourbit registers.

Figure 6-6 is the schematic arrangement of pins on the chip. It is a 24 -pin DIP. The memory matrix is in a 2048×8 format. Note pins $9,10,11,13$. 14, 15, 16 and 17 are called data bus lines D0 through D7. Yes, there are eight-bit holders to a register. Only four-bit holders are necded. The rest of them will only get in the way. They must be disabled. Therefore lines D4, D5, D6 and D7 are all connected to 3.3 K resistors that go to +5 volts. Since +5 volts is a high, all four unwanted bit holders are said to be held high and inactive. This is one design trick to disable unwanted pins on a chip so they won't interfere with operations.

Because there is the need to address 2048 individual locations, 11 address lines are connected: A10 through A0. Each additional address bit doubles the number of locations that can be addressed.

The 11 address lines are connected to pins 19. 22. 23. 1. 2. 3, 4, 5, 6, 7 and 8.

Pins 20 and 18 are called ${ }^{\circ} \mathrm{CS}$. The CS stands for chip select. The asterisk in front of the CS means that the pins are held high at +5 volts most of the time. When the high is on the pins, then the chip is turned off. 【f you desire to select the chip and turn it on, then a low from the PLA is sent to the pins. Note that they are tied together so that one low. called "color RAM." from the PLA activates both pins. They both must be so enabled for the chip to turn on. When the chip is selected it will respond to the 11 address lines.

The asterisk, or on other schematics a line above the CS , is the sign that the chip will be enabled by a low. If the asterisk is not there, it means that the CS pin is being held low while off and will be enabled when a high arrives.

How does the chip know whether to output the contents of the addressed register or input a new

Fig 6-5 Each rogister in the 2114 is able to store a high or low vollage The high is the electronic representation of a 1 and the low indicates a 0 . The register addresses are arranged in rows and the data bits are in the columns.
set of highs and lows? Pin 21, *WE, makes that decision. WE means "write enable." The status of the write enable pin determines if the chip is to be read or written to. It is the read/write line for the 2016 chip. The asterisk means that the chip is being held luigh. This is the standby condition. While in this standby, the registers can be read by another chip. Most of the time, the Color RAM chip acts like a ROM and is read. If it is necessary to write to the chip, a low is sent to the *WE pin and the status changes to write.

The last two pins on the chip are the +5 volt power supply input at pin 24 and the ground connection at pin 12 . They can be tested with a vom directly or with a logic probe. The +5 volts will read a HIGII on the probe while the ground connection (0 volts) will read a LOW.

Figure 6-7 is the chip's Test Point Chart. Note that the different pins are all labeled with a logic state. Most of them are Pulses. Other chips in the other charts will also have high and low levels. There are also the input power supply voltages like +5 volts and ground connections. At the top of each chip there is a half moon notch which is the keyway for the chip.

The voltages and logic states shown on the pins are the ones that should be present while the computer is in a $\mathrm{C128} 40$-columnn mode and idling. If you read the pins one by one with a logic probe or vom. a properly operating chip should show these states or voltages. If you read these pins and one or more of the readings are incorrect, then that could be a clue to any trouble you are looking for. If the readings are all okay, then the chip is probably okay. The

Fig. 6-6. This is the schematic arrangement of the 2016 color RAM in the C128. It has eight data bil connections. Note that lour of the data lines are disabled by connecting them to -5 volts. Only D3-D0 are needed to code the character color
use of charts like these are one of the test techniques that professionals use to pinpoint trouble.

The beginning of this color RAM discussion described what each pin on the 2016 chip is doing. As you make logic probe tests on each pin, note carefully if the pin is doing what it is supposed to do. When a pin is found that does not have the correct high, low, pulse or dc voltage, then try to puzzle out the cause. If you solve the puzze, which is mostly mind work, you will then know what part or connection is defective. Once the diagnosis is made. then the physical repair of replacing a part or repairing a connection or copper etch spot can follow quickly.

DYNAMIC RAM

One of the most striking differences between static and dynamic RAM is the organization of the bit holders. The static 2016 chip is organized in a 2048×8 layout with four of the eight bit holders disabled by holding them high. Figure 6-8 shows a 2048×8 chip layout. In a chip like this one, all of the byte-sized registers are contained on one chip. The layout of the 4164 's in the C128 is entirely different.

One dynamic 4164 chip has a layout of 65,536 $\times 1$. This means there are 65,536 registers on the chip but each register is only one bit wide. Each register or each bit as it tums out, has its own address.

Fig 6-7 This is the Test Pom Chat for U19 the 2016; color RAM. It shows the actual pinout, the direction of signal How and the logic state that should be present while the C128 is idling in Ci28 mode

Figure 6-2 showed the layout. You can see all the single bit registers in comparison to the 2016's eight bit registers.

In the C128. the 16 DRAMs are arranged in two banks of eight DRAMs each. Eight DRAMs are wired up as one unit. They are connected in parallel. Figures 6-9, 6-10 and 6-11 describe the layout. All of the eight chips are identical. Each chip has the same number of bit holders. Because there are eight
chips to a set there are enough bit holders on all the chips to form 65,536 bytes. All they need is to be wired correctly. The first thing that is done is to wire all the address lines to the same pins on all chips as in Fig. 6-11. That way, when an address comes over the address bus, all eight chips address the same lacation number simultaneously.

The next wiring is to connect each chip in the set to a different data bus line. That way, as the

Fig. 6-8. This is a static RAM chip organized in a 204β a 8 tastion. All of the byte-sized locations are found on the sungle chip

Fig. 6-9. The 4164 's in the C 128 are organized in a 65.536×1 lastion. It takes eight 4164 's to produce bylesized locations: one bit of a byte on each chip.

Fig. 6-10. AAM address 1024 is shown as one bil torsi out of each RAM chip.
same number location in each chip is addressed, each of the bit holders addressed can either reccive a bit or output a bit. Each chip contributes one of the eight bits in the addressed byte. A byte-sized register is found in the set of eight-one bit from each chip
forming the eight-bit register. Figures 6-9 and 6-10 illustrate the design.

The bit holders in the dynamic RAM are not flipnop circuits as in the static RAM. The bit holders are capacitance that is formed in the MOS gates as

Fig. 6-12. DRAMs che not use flip-flops as bit hotders Yhe gate capacitance of the FEE is on the chip hold the highs and lows
shown in Fig. 6-12. In the FETs that make up the chip circuits, the gate is separated from the channel by the sensitive glassy insulator. The gate becomes one lead of a capacitor and the rest of the FET be. comes the other lead. The insulator forms the dielectric. In this way a tiny capacitance is formed. The capacitance, like any capacitor can be made to hold a charge.

For the charge to represent code for the binary data, the lollowing convention has been arranged. If the capacitor is charged, it represents a high (binary 1). When there is no charge the capacitor is storing a low (binary 0). The amount of capacitance is liny but adequate. The memory matrix on the 4164 DRAM is really nothing more than a clever circuit around a grid of tiny capacitors.

Memory Refresh

The 2016 static memory chip has active nybble. sized registers, four active flip-flops in each register. The flip-flops are de stable. That is why the chup is called static. If you place a dip-flop into a high state or a low state (representing a 1 or 0), the flip-flop will hold that state as long as the power is on. Nothing more has to be done. If you want to read a reg-
ister, then you address it. You can make as many copies of the data in a static register as you want without losing the stored state.

This is not the case with the dymamic RAM. The 4164's are storing their states as capacitance charges, not stable flip-flop transistor conductions. The capacitors contain tiny charges. The capacitors can only hold their charges for a short period of time. To be exact, the capacitor charge will fall to a useless voltage level in a little more than 3.66 milliseconds (thousandths of a second). The capacitors must be recharged, called refreshed, at least once every 3.66 ms .

As Fig. 6-13 shows, the VIC provides the refreshments. Pins 19 and 20, signals *RAS and *CAS, of the VIC are the ones involved with maintaining the capacitance charges. These signals are applied to all the 4164's at the same time. The RAS stands for Row Address Strobe and the CAS for Column Address Strobe. The details on the signals are found later in this chapter. These signals are designed to recharge the grids of capacitor bit holders in cach chip's memory matrix.

In any computer using DRAMs, some sort of refreshing system must be used to keep the mem-

Fig. 6-13. Pins 19 and 20. - RAS and -CAS, deal with constantly recharging the tiny capacitance bit molders in DRAMs
ory full of data intact. There are all sorts of schemes The C128 uses special signals generated in VIC to do the job.

Memory Layout

As Fig. 6-2 illustrated, the bit holders are laid out in a grid of 256 rows and 256 columns. Actually. as Fig. 6-14 shows, the layout is divided in half with two grids of 128×256, with a band of sense amplifrers inbetween. But for all practical purposes, you can think of the grid as 256×256. Consider the total grid as a single component.

Figure 6-15 shows a functional block diagram of the inside of a 4164 RAM chip. Attached to the

Fig. 6-14. The microscopic insides of the 4164 actually has fwo gruds of 128×256 with 256 sense amplifiers inbotween.
boltom of the grid is a column decoder circuit. It is able to contact every one of the 256 columns. Connected to the side of the grid is a row decoder circuit. It is able to contact every one of the 256 rows.

The column decoder circuit is the data input/output circuit. When a bit in a grid is addressed and becomes activated, the column decoder is there to help out. If the bit is being read, the colums decoder receives the high or low contents of the bit holder at one of its connections. When the bit is written to, the column decoder will be the circuit holding the data and will transmit the data to the addressed bit.

The row decoder circuit is part of the bit holder addressing mechanism. The column decoder is also part of the addressing system. The column decoder helps out with the addressing in addition to handling the data in and out.

The dynamic RAM chip is addressed differently than the static RAM. From the mind's eye, a static RAM is a high stack of individual byte locations, and a dynamic RAM chip is a grid of bit-sized locations. Each location has its own address. The 4164 chip has 65.536 locations, but they are arranged in a 256 $\times 256$ grid. 256×256 equals 65,536 .

A single bit is addressed by using two addresses: a colums address and a row address. The desired bit holder is the location where the two addresses intersect. Therefore, the address sent out by the MPU over the address bus is in two parts. Eight of the address bits are to locate one row ad-

Fig. 6-15. An address in a 4164 is contacted by first addressing one of the 256 sows and then addressung one of the 256 columns. The desired bit is lound at the resulting row-column intersection. That tut then opens up and can be read from or written 10
dress, and the other eight bits find the column address. The address bits all go to the RAM chips at the same time. The same location bit. on each chip of the RAM set is addressed. The contents of each bit that is addressed this way can then enter or exit each RAM.

Each chip folds one bit of the byte that the MPU wants. All of the number 7 bits, in all of the 64 K bytes, are located on chip number 7 of the eight chip set and are attached to data bus line number 7 . All of the number 6 bits are on chip number 6 and are attached to data bus number 6, and so on.

Fig. 6-16 Two multiplex chips perform the DRAM address chores First they output the row address and then, over the same lines, the column address.

The RAM chips in the C128 are addressed through two 74LS257 multiplex chips, as illustrated in Fig. 6-16. All 16 chips are addressed at the same time. As each location in every RAM chip is addressed simultaneously, two bytes are actually addressed. The PLA is only selecting one bank of eight chips at a time, however, and only one byte of data is accessed. The addressing gets complicated but between the 74LS257 chips doing the row/column addressing and the PLA doing the chip selecting the correct byte of bit holders are contacted. There is more about this addressing in Chapters 12, 13 and 20. The internals of the 74LS257 multiplexers are covered in Chapler 8.

Operation

Figure $6-1$ is the Test Point Chart for all 16 4164 's. U38 through U53. All 16 chips should read
the same. All 16 pins on each chip will have the same logic states. They are all pulses except the +5 volts power on pin 8 reads high and the ground connection on pin 16 reads low. These states will be present when the C128 is on and idling.

There are eight input lines from the multiplex chips to all of the 4164 's. The lines are called MA7 through MAO. The MA stands for multiplexed addresses. The eight lines are derived from the 16 address lines that the MPUs put out. The 16 address lines are connected to the two multiplex chips. Eight bits at a time are needed by the 4164 's. Eight bits are needed to address the 256 row addresses. Then eight more bits are needed to address the 256 column addresses. Pins 5, 6, 7, 9, 10, 11, 12 and 13 receive eight bits at a time-first the row address and then the column address. The muluplexers send the bits that way as shown in Fip. 6-16.

At pins 4 and 15 , sugnals from VIC, RAS and - CAS arrive. These signals, the row address strobe and the column address strobe are there to trigger the two types of addresses into the decoders in syne. As the multiplex chips leed the 4164 's first with row addresses and then with column addresses, the - RAS signal strobes the row bits into the row decoder and the "CAS signal strobes the column bits into the column decoder.

This multiplexing plan uses only cight address pins on each of the 4164^{\prime} s. The savings of eight lines allow the 4164 chips to be placed in a 16 -pin package.

Figure 6-11 Ulustrates that the 4164 has two data pins at 14 and 2. Note that the data pins are wired together and act as a single pirs. The connected pins attach to their respective eight data bus lines.

The two lines are for bouth input and outpust with the data bus, as shown in Fig. 6-15. Internally, the iwo pinss are wired in with the column decoder circuit. The data-in connection is to the data latch. The data latch is a temporary holding register for the incoming data. The data latch is also connected to pin 3. WE, the write enable pin. During a write operation, WE goes low which activates the latch and lets the latch transfer the data to the column decoder. The decoder installs the data into the addressed bit holder.

When data is leaving the chip it is passed from the bit holder to a data output buffer stage. The buffers are connected to the -CAS inputs. When *CAS strubes, the data outpur buffer permits the outgoing data to leave the chip and head out over the data bus.

Timing

The timning diagram in Fig. 6-17 summarizes how the 4164 memory array is controlled by the three signals $=$ RAS。*CAS and -WE. During the addressing as seen on the top waveform, the *RAS strobe signal comes along into pin 4 , till the middle of the row time. and then falls. This falling edge strobes the row bits into the row address latch. - RAS then remains low for the remainder of the cycle. Meanwhile ${ }^{\circ}$ CAS is moving into pin 15. As the column address time arrives ${ }^{\circ} \mathrm{CAS}$ falls. This falling edge strobes the column bits into the column address
latch. $* \subset \wedge S$ then remains low for the rest of the cycle. The two latches in turn send their bits to their respective decoders. One of the 256 rows is addressed and one of the 256 columns is addressed and their intersection bit is activated.

While the above was going on the -WE signal sets up either a read or write condition for the eight selected bits, D7 through DO, one on each chip in the R^M set. In Fig. 6-17 a write condition is arranged by *WE going low. A low at pin 3, the *WE entranceway, causes the data-in latch to pass data written to the array to be installed in the memory bits. A high at *WE keeps the data-in latch shut and lets the chip output the addressed data to the data bus.

As you can imagine, the timing of the three signals is critical. During routine servicing, however, the timing is not normally a factor requiring testing. The uming is an important consideration during design. The important part that timing plays from a repair point of view is its feature during a chip replacement. You'll see the tining in the spec sheet of a new part referenced as access time. For instance, the 4164 comes in a number of timing versions. The access time on different 4164 chips could be 150 nanoseconds, 200 nanoseconds or 300 nanoseconds. What do these different timings mean?

Different computers run at different speeds. For example, the C 128 in the C 64 mode runs at a clock rate of 1 MHz . This means that the 8502 in that mode completes one million full cycles in one second. One cycle takes a millionth of a second, or as it is called, a micrusecond. In one microsecond there are 1000 nanoseconds. A nanosecund is a billionth of a second. When a 4164 is said to have an access time of 200 nanoseconds, that means it uses 200 ns of the 1000 ns in one clock cycle to be accesssed. either written to or read from. The 1000 ns clock cycle comprises one full execution of the MPU.

During the 1000 ns execution cycle, the 850,2 must address the 4164 array. send the signals to control it, open up the addressed bits, either read or write to them, and then get ready for the next cycle. A 200 ns array is fairly fast and can easily receive the control signals, open the addressed bits, and complete the read or write. In fact, even the

Fig 6-17 The 4164 chips are controlled by the !hree signals - RAS. CAS and - WE During a cycle. the row addresses are strobed and then the column addresses are strobed. During that time. WE sels up is read or write conditon.

300 ns chips are easily accessed. If on the other hand, you had some sort of chips that had a 1000 us access time, you would be hard put to get them fully accessed with a 1 MH 2 clock. You'd have to get a slower clock or add additional circuitry to gain proper access.

In C128 mode the 8502 , besides running at 1 MHz , also can run at 2 MHz . This speedup in frequency cuts the cycle time down to 500 ns . With the 4164 array being able in be accessed in 200 ns . the cycle time is still satisfactory. The action just proceeds in a quicker fashion. The 780 that conducts the CP/M mode uses the same 4164 array.

Refresh Timing

The $4164^{\prime} \mathrm{s}$, as DRAMs need to be constantly refreshed. The refreshing at first glance books impossible. There are 128 K locations in the DRAM set that are to be refreshed. That means 131,072 tiny capacitances must be recharged at least once every 3.66 milliseconds or they will lose their information as the charge drops below a certain vollage. Fortunately each bit holder does not have to be individually refreshed. The refreshing can be accomplished by simply addressing rows. When a row is addressed all the bits in the row are recharged.

Also notice that the refresh time is in milli-

Fig. 6-18. The 1 MHz clack has a 1000 nanosecond cycle time About half the time 1 l active high and the other hall, 02 is active high. 91 deals with the addressing whito d2 conducts the data movement operation
seconds, a thousandth of a second in comparison to the micro- and nanosecond that was also mentioned.

Besides the slower timing needed for refreshing, as mentioned it is also not necessary to do anything but address the 256 rows in all the chips simultaneously to recharge the tiny capacitances. The electrical action of the addressing restores the charge in the row that is addressed.

The requirement is that every row must be addressed within the 3.66 millisecond refresh period. At the 1 MHz clock rate it only takes a fraction of the required time to handle the refreshing.

A dynamic RAM refresh controller in the VIC is able to refresh all 256 rows in plenty of time. The refresh circuit uses the -RAS signal to address the rows. It does the job while the computer is busy do-
ing other jobs, not during the time the RAM is being accessed.

The 8502 is controlled by two clock signals shown in Fig. 6-18. They are called phase 1 ($\phi 1$) and phase 2 ($\phi 2$). These will be discussed further in Chapters 12 and 17. $\phi 1$ is a signal that drives the internal circuits of the MPU). It is active about 500 nanoseconds of the 1000 ns total cycle time. $\phi 2$ is a similar signal that is active the other 500 ns of the 1000 ns cycle time. $\$ 2$ drives the rest of the computer external to the 8502. The 4164 array is accessed during $\$ 2$.

During $\phi 1$, while the MPU is busy internally and the 4164 is waiting to be accessed, the VIC goes ahead and refreshes the 256 rows in the array.

7. Read Only Memory

Acomputer, for the most part, is a hunk of machinery. It needs an uperator to get it to tum on and start working. It needs brains to tell it what to do. The brains are in the system ROMs either internal or external. In the C128 most of the ROMs. the so called read only memory, are plugged into sockets on the printboard or plugged into the expansion port as a cartridge. There are five sockets on the board for five 28 -pin ROMs, U32, 33, 34 . 35 and 36. U's 32, 33, 34 and 35 sockets contain ROM chips. U36 is an empty socket ready for an additional ROM for expansion purposes. In addition there is one 24 -pin ROM, R 18 , the character ROM which is soldered in.

The ROMs themselves are also hardware preces. Inside the ROMs, though, are humanproduced computer programs that nn the C128. These programs are loosely referred to as the operating system (OS). In the ROMs are OS's for BASIC and Kernel. In the C64 mode, 16K of ROM is set aside for about 8 K of BASIC and 8 K of Kemel. For the C128 modes, up to 48 K of ROM is avail-
able. The BASIC system of version 7.0 has a high and how section. Between BASIC 7.0 and the Machine language Monitor, 32 K of ROM space is used. With the Kemel, some 1/O, and the $40 / 80$ column editor, another 16 K of $\mathrm{R} \cap \mathrm{M}$ space: is utilized. CP/M doesn't have to use much of the ROM operating system. It loads its OS program from the system diskette that comes with the Cl 28 .

In the last chapter, it was shown that RAM is a storehouse for binary data bits. The bits can be installed, removed, and reinstalled continually. In fact, the data movement in and out of RAM is the majority of the work that the computer performs. The RAM is both read and write memory. ROM on the other hand is read-only memory. It holds binary data bits engraved in the silicon. The bits are burnt into the silicon in a factory and cannot be removed or replaced. Once a bit is burnt into the chip there is no replacing it. To change the program the ROM must be physically changed.

There are all sorts of schemes to burn prorrams into ROM chips. Figure 7-1 shows one of the com-

Fig. 7-1 One of the many ways to burn a program into a ROM chip is with dipdes. A chip is built with diodes connecting rows and columns. It a diode is left intact it could be code for a high. It the diode is blown it could represent a low.
mon methods. It is a portion of a ROM chip. There are three addresses and at each location there is a byte of data burnt in. The addresses are the rows and the bytes are the columns.

The layout is similar to the way a static RAM is made. All of the bits in the addressed byte are on one chip. In the C128, the system ROMs are ejther laid out as $16 \mathrm{~K} \times 8$ or $32 \mathrm{~K} \times 8$. Figure $7-1$ shows three addresses with their respective bytes. The addresses, of course, are connected to the ad-
dress bus while the bits are attached to the lines of the data bus, D7-D0.

Each row has its own special address. Each column is connected to every row. Between the row and a column, a diode could be wired in. There is then one microscopic diode between each row and every column, making each diode represent a bit. In Fig. 7-2, row address 0010 has eight diodes attached. The cathodes of the diodes are connected to the row side. The anodes of the diodes are wired

Fig. 7.2. A row location could stan out hile with all eight diodus intact. Its contents would then be 1111 1111. It some dsodes are then blown the contents would change to 10011100.
to the column side. While all eight cathodes are connected in common to row 0010, the anodes are attached separately to the eight columns.

The columns in turn are attached to the data bus lines. When address 0010 is dialed up, the eight diodes will conduct, cathode to anode. According to the wiring, the conduction of the diodes could be code for a binary signal 1 . The columns will then output 11111111 since all of the diodes are intact and conducting when addressed. The 1's will then llash over the data bus to the MPU.

Suppose you are the one coding the ROM. You do not want address 0010 to output 11111111. You want address 0010 to output binary 10011100 . In order to effect the change, you must alter some of
the diodes to produce the change in signal. An analysis of the change shows that you want to alter bits D6, D5, D1 and D0. Bits D7, D4, D3 and D2 should be left alone because they are already outputting 1 's. But you want 0 's installed in bits D6, D5, D1 and D0.

The technique is to apply a large voltage onto the diodes where the 0 's are to be installed. With the application of the destructive voltage, the diodes to hold 0's are blown. They become open circuits. They can no longer conduct like the diodes that code the $1^{\circ} s$. With the conducting diodes representing 1 's and the blown diodes representing 0 's, the data at address 0010 becomes the desired 10011100 .

Although this procedure is fine for the experimenter on a workbench, during actual ROM
manufacturing nothing so slow can be used. After the program to be etched onto a ROM is written, a large printed circuit pattern is made. The junctions that are going to contain a diode or transistor are clearly defined on the pattern. They will be the row. column locations that will be outputting 1's. The row-column locations that are to designate 0 's are left open. Once the pattern is made, it is then reduced photographically and used to manufacture large quantities of the ROM.

In the Cl'28, U's 33,34 and 35 started life as identical chips. Then the operating systems were burnt into the chips. They each assumed new idenlities. They are still addressed and have their data output in the same way, but the data they output is different.

BLOCK DIAGRAM

There are four main parts to a typical ROM besides the power in and ground. For example, look over the U18 the character ROM. In the ROM is code to produce on the screen two complete character sets. One set is a group of 256 uppercase and Rraphic characters. The second set is another group of 256 upper/lowercase and graphic characters. There will be more detail on the ROM contents in the video Chapters: 20 and 21. U18 is shown in Fig. $7-3$ - the third Test Point Chart. There are 24 pins on the chip. The pins are all connected to microscopic circuits that are completely inaccessible lo you. Even though the circuits are too tiny to work with directly, you can make tests accurately from the pins on the chip.

In the block diagram in Fig. 7-4, note the memory matrix. The memory is organized as 4096×8. This means 4096 byte-sized locations are in the ROM. The locations are Giguratively stacked in a tall skinny pile with location 0 at the very top, and location 4095 at the bottom. Actually, the matrix is laid out in a grid fashion, like dynamic RAM. but it is wired as a tall pile, like the static RAM, so we should consider the wiring, not the physical way it is produced.

In order to address $4096(4 \mathrm{~K})$ individual locations: 12 address pins must be on the chip. 4096 different combinations of 12 bits are possible. To
choose one address out of the $4 k$ locations. 12 address bits must be applied. For instance, to address location 185 you'd send bits 000010111001 out over 12 address lines. Those highs and lows will activate location 185 and leave the rest of the locations shut down.

The 12 address lines A11-A0 are the connections made to pins $18,19,22,23,1,2,3,4,5,6$. 7 and 8. The lines enter the package and are connected to an internal circuit called the address decoder. In the decoder, the highs and lows are evaluated and control vollages generated. These voltages are processed into the memory matrix and activate the single location that was desired.

Once the location is accessed, the voltage applied at the row address follows the wire pathways as seen in Figs. 7-1 and 7-2. The paths are through components, like diodes, that are connected from the row line to the column lines. The pathways with intact components pass the highs. The pathways that were blown, or are missing diodes, do not pass a high-they maintain a low. The byte of highs and lows travels out the columns to the next stage. These bit holders can only output highs and lowsthey are "read." They cannot receive highs and lows, or be written to. The bit patterns are permanently burnt into the memory matrix.

The next stage in the ROM is a set of eight three-state buffers. Buffers are covered in Chapter 10, but for now consider a buffer to be an amplifier that can be turned off and on with the aid of its threestate characteristic. The buffers are turned off and on by another circuit in the ROM which will be discussed next. When the buffers are on, they pass the highs and lows from the eight matrix columns to the eight pin connections that attach to the data bus, 177-D0. These are at pins 17, 16, 15, 14, 13, 11. 10 and 9.

Between the incoming 12 address lines and the eight data lines. 20 of U18's pins are accounted for. Pins 24 and 12 are +5 volts and ground. This leaves two pins unaccounted for. They are pins 21 and 20. Pir 20 is called *CS1. The signal $=$ CHAROM (the character ROM select signal) from pin 46 of the PLA, is applied to pin 20. It so happens that U18 shares addresses with some 1/O functions. When

Fig. 7-3. U18 is the character ROM Test Poml Chan. The logre probe should show all pulses except for the chip select. CS2. the +5 volts and ground.

U18 is selected the 1/O is switched off. When U18 is not needed, the $1 / 0$ uses the addresses. Pin 20 does the selecting.

Pin 21 performs another job. Inside this ROM chip are two 4 K sets of characters, totaling 8 K . Only one 4 K set, however, is available at a time. Why iwo character sets? One set of 4 K is used in C64 mode. and the other 4 K set is used in C128 morde. Iin 21 is connected to the $128 / 64$ signal coming from
pm 47 of the MMU and pin 15 of the PLA. When you are in C64 mode, then the signal automatically chooses the C64 character set. If you are in C128 mode, then the C128 character set is chosen.

Character ROM Contents

The character ROM, in one 4 K set, has 4096 bytes of permanent memory. Internally the set is

Fig. 7.4. The inside of the ROM is fally straightlorward. The chup-selects turn on the chip. the address lines locate the desired register, the register outputs to some butters and the data heads out over the data bus
addressed from 0 to 4095. In the C64 mode the ROM is addressed from 53248 to 57343 . In the 4096 bytes of memory there are 512 characters. Each character needs eight bytes to be stored (512×8 - 4096).

Each displayed character is composed of a grid of dots in a character block that is eight light dots wide and eight dots high (see Fig. 7-5). The 64 dots can be turned off and on to produce a character pattern. A high from a bit in the ROM turns on a light dot and a low turns off the dot.

The output of a character ROM leaves the chip through the data bus, D7-D0. The output goes to VIC. The VIC receives a character shape in that way and processes it into the TV display.

The first character in ROM is at address 53248 and extends eight bytes to 53255 . It is the character, ©. It is an uppercase character. The 512 charac-

Fig. 7.5. A character in the display appears when grid of eight light dots across by eight dots down has some of its dots lit and others turned ofl. Here is how the character (a) is formed.
lers are contained with the following decimal addresses for each category of characters:

Uppercase/Graphics Set

- 53248 Uppercase characters
- 53760 Graphics characters
- 54272 Reversed uppercase characters
- 54784 Reversed graphic characters

Uppercase/Lowercase Set

- 55296 Lowercase characters
- 55808 Uppercase and graphic characters
- 56320 Reversed lowercase characters
- 56832 Reversed uppercase and praphics characters

Checking Out the Character ROM

ROMs are very sturdy in comparison to other chips, but trouble can strike them. If some bits on a ROM should get destroyed, then incomplete characters will appear on the screen. It is easy to check out the characters on the ROM if character trouble should happen.

In C128 BASIC, a little three line program can be written. The character ROM can be accessed through Bank 14. (There will be more about banking in Chapters 14. 15 and 16.) The program will PEEK the contents of any or all of the ROM bytes. You just have to specify which bytes you want to know the contents of. The binary contents will be returned in decimal. You can then obtain the pattems of 1's and 0's from the Byte Sized Conversion Table in the back of this book.

For example, suppose that you want to see the bits making up the (10) character. The first thing to do is to enter the PEEK program for the eight bytes in which the character is stored in the ROM. It is stored at addresses 53248 through 53255. The first line accesses Bank 14 and the last line moves the program back to Bark 15. The following is a simple program for the C128 mode:

100 BANK 14
200 FOR C $=53248$ TO 53255: ? PEEK(C);:NEXT
300 BANK 15

When the program is rum it will return 60102110 1109698600 . The bit patterns will look like the following in an 8×8 matrix that one character block on the screen displays:

IDecimal	Binary								
60	0	0	1	1	1	1	0	0	
102	0	1	1	0	0	1	1	0	
110	0	1	1	0	1	1	1	0	
110	0	1	1	0	1	1	1	0	
96	0	1	1	0	0	0	0	0	
98	0	1	1	0	0	0	1	0	
60	0	0	1	1	1	1	0	0	
0	0	0	0	0	0	0	0	0	

If you look closely at the bit pattem you can see the (0) defined. Figure 7-5 shows what the screen leroks like with the l's lit and the 0's unlit.

You can also access the character ROM in machine language with the Monitor, or in C64 mode in BASIC if need be-through it is more of a programming job. Without the Bank command you must write lines to switch in the character ROM and switch out the I/O hardware that is shaning the addresses. Then you must transfer the ROM bytes (1) RAM. Then the ROM has to be switched out and the I/O switched back into the memory map and BASIC. Then the ROM bytes can be printed on the screen in decimal.

Besides this test method, you can check out the ROM with a diagnostic program like the 64 Doctor mentioned earlier in the book.

THE REST OF THE ROMS

The character ROM is a special type that supplies display materials. The other four ROMs: U32. 33. 34 and 35, deal mostly with: the Kemel, the Monitor and BASIC. The empty ROM socket, called U36, is there for expansion. The socket is wired; complete with 32 K worth of addressing, eight data bus lines and power. Any ROM plugged in will start operating immediately and can be contacted directly
from the keyhnard. It can be thought of as a special miternal port.

Chips are produred for the sorket that enhame she operation of the C128. One ctip is advertised by Cutaties Urumited Inc.. 12305 N. N. 152 nd Sereet, Hrush Mrairie, Washingtun 98606. They cald it The 128 Superchip. It gives 32 fi of utiltues, swh as File Copter. Nabbler. Track \& Sector Editor. Screen Dump and 300/1200 baud Terminal Promram. There will be more of shis type of chip availabic as time goces by.

The KOMs already in the Cl 28 are operating systems (OS). They are all $28-$ pon IMPs. They montain all the programs that ron the compuler. Whenever the MPU makes a move, it cherks with the ROMe for directons on how to do ib.

Intenality the ROM structure is quite like the character ROM. They are powered wnth +5 volrs at pin 28 and relurned to ground at jin 14, as shown in the Test Pcint Chart of Fig. 7-6. Thes all connect to the data bus $07-1010$ at pins 19, 18, 17, 16 , 15, 13, 12 and 11. Though the charater ROM has nuls 12 addreas pins, these four other ROM's have either 14 or 15 adrevess pirss. With 14 pins A13-A0. 16 K uf adulessees can be contacted. With 15 addreses pins A14-AO, the ROM has $32 K$ of programs.

In different model runs of the C128. U32 and U'34 have been either $16 \mathrm{~K}^{\circ}$ or 32 K ROM. U33 and I'35 are usually 16K. As time goes by, however, be prepared for either 16 K or 32 K many of the ROM sarkets.

The 16K ROM has the power, addressiny and data pinss. arrd at lew otber pins of note. Pin I is a frogramming Voltane connection but iss unused un the C128. It is connected to +5 volts and furgotlen. Pin 20 is - CCE, a chip coable. Is as active when a low st applient. It is tied to pround. which in a low. Thee pin is Uhss always active. Pin 22 is $=0$ ER, an outprat cnable. It is active low. It receives a sipmal frum the PTA. On U32, pin 22 receives the signal - ROM1. If this 16 K ctup in in any other chup positimn, then it will receive the appropriate signal. For instance, if U 35 is a 16 K it wall receive the simpal - RUMM from the PlaA.

The 32K ROM also has ofher conmections. Pin I is a Pmpramming Voltage pis that is sied to +5 v colts and forgotien about as in the 16 K KOM . Pin 20 is also a chip exable, tied to mound and forgotten aboval. Pin 22 is the output cmable and receives an approprate $=$ PROM sighal from the P1A in select

In Fig. 7-7, timing diagram is shown for both of these ROMs: the 15 K and the 32K. On the top the addienamuk bits are shuwn. They enter all of the address pirs. The bits select one of the byte-aized whatsions an the ROM.

At the same time, into pis 20 of the chips enters the chip enable sugnal. It is actually always luw stace. the pios are all tied to ground. The pins ane active how. Also at the same fime the cutput enable signat is entering at pin 22. It is conning from the P1A. It starts off high and then, as the sidress bits and the chip enable signal are wurking, it falls low. This activates the chip. Since the ROM can only output data, in does so to the data bue pins.

ROM Contents

In Chapters 14 and 15, the ways in which the PIA and MMU control the RAM and ROM is oovered. They tura the ROMs otf and on to get the best pussibic ase of the broup. U32, also called KClMI, is the conlaner for the C64 mode operasung system, It cam be 16 K or 32 K accordeng to what mudel run Cl'28 you are usmg. In eitlyer casc. 16 K of ROMI coneains the BASIC and Kernel pro grams-split up about $8 \mathbb{R}$ each.

On the BASIC ROM are hundreds of small machne language programs thar respund to all the BASIC statements and all the requests for calculations and data manipulations. In C54 mode, the ROM is activated toy approximately; 65 special keywords. The keyboard upper and lowercase characters, plus the dugts (1-9, are nsed to produce these 65 keywards. Some of the uther symbols are also used to produce the BASIC keywords. The keywords are the C64 commands ynu are kamiear with: for instance, CHRS. DATA, GOTO. etc. When yor enter these key. words, the HASKC ROM is addressed and runs a lit-

 show a high instoted of a putse.

Us program that performs the ebore that the keywors is destmed io do. The kevwords and other prograrnnuish iletads ate found in the system Gude that came with the $(12 \mathrm{~s})$.

Kernel ROM

The BASIC ROM is a coliectom of a few hundred litte programs tha: execute ise ise rword commands wit the BASIC language. The hernet etmoans

ROM TIMING SIGNALS

12120

 170 तata bus
the proxpans that perfurm the rest of the uperating system's daties. The Kernel, first of all, sets up the marclune when you forst aum it can. it initializes ill the regaterers ins all pertument chips.

Secondl), the Kernel antwates the screen edtfor for ile Cti4 activity. The arreen edilar takes the sugnals germerserf from strikug the kegs. and has thers instalbed io their reapectwe character bhorks on the TV'screpr. The screts editor aison monsuls the eussur. it alou tenponds so commands like debetc and insers

Thurdly, the Kienvel provides anesy fo the operatiuge systemis grraup of prograses in the ROM. Is afees so by means of spectiad Commodone jumpla. bies. These jumpl tables are very innpontant to users ont the VIC 20, the C64t, and now the C128. As will pe explained an the arxe section, the jurmp tahle given these conupuless a consaberahte alsusunt of lengevity. As time goes hy, the sermputern wail not fendi to beexome shosolete an quickly as new opreraling systems are introdured. The jump Lables allow your nifler ma-
rhune il atlapt to a lot of the new sutroutinces in a sew uperuing sysiem.

When you first awitch un the C'12R an (64 muck: the Kerael goes sto its initializaliza nequence. It sets a spectinn of RAM called the sterols. Then it cleara the decimal movere of nperation. Next the Kiernes chectas the IRt)M carcridge holder exrcurs. is a ROM martritese is plugged in, then the comatrol of the maHxine is switched to the caltridge system. If the holder is emply. then the Kiernel retains comatrul and continues its inviatiastion provedures.

Thee Kernel then aums its attertion to all the $1 /()$ devices and their registerts. They will be discussed in Chlapters 19 co 23. The serial bus is initialized. CLA1 is set to constantly stan the kepboard. The 60 Hz times in cacts CIA is turned un. The SII ehip is cleared and the RASIC memory mop for the C64 mode is selected. The cassiette moter ss tumed off.

As a serviting cbeckout, the Kiemel combinis a specisal diangonatio prongram shat exercimes the R.A.3 Hat the cod mode will he using The herned runs
the diagrostic at the beginning to make aure that the RAM chins are miact. Onoe the RAM "chects good," the Kernel thers sets the memury ppinters for the top and botrom of RAM. Then the Farst pape in KhiM, page 0, is initialized. The tape buffer is then sep.

The Kemed then sturem sume spectial addresses in RAM at sperific locations. These addresses are needed during scme IIO activitics. Another bitle jump table is instalied by the Kernel in the low section of KAM. The TV sereen is eleared. The sereen editor has its varmables reses.

All of these stejps talke care of the orisinal lowseheepists cluties that the Kernel noust perform belfore you begin your B.ASIC prongranming. Oroce all this is accomplislyed, BASIC is odddressed and you ane RE:AIVY. The Screen Fditor program in the Kernel wiil now work with you to display your keybnard input.

Jump Tables

As you can sec. the cperating system in the C6moote is deialled and combwicaled. It is even more so in the C128 musle. T7w BASIC and Kernel C64 mode programs in U'az are also critical. Hone vital bit in an important byte becomes deffective, then the entire 16 K of C64 ROM cuadl be pendered useless.

Like the RALilC sertion, the Kermel part is alsn filled with many operating programs. The Kernel's programs. thousth, are oot octinted by B.ASRC bey. words. The Kerned's proggrame are turned on by ma chine lanysuge code numbers. Annther poiat io remember is: through the BASIC programs can be. num with keywurds. the BASIC output is in machine benpuape, live the Kiemel output ia. The mactine langhage output of BASICC and Kermel are instrurtions and data that the rest of the computer can understand and process.

The Kermel is divided into iwo main sections. The costrol programs are located at the begionung addresses of the ROM clup. Consisting of a few doxen inputsoutput routines and a number of otber management pregrams, these rastines take up mnst of the addressers un the chip. The jump table carte is located near the end of the address list. The jumps
table is a sroup or kexatione with each focation full of data as scees in fris. $7-8$. The data in each bocaunn consists of an addreas. Each jump table addrens is a starting puirst of une of the prosgrams stored in the begisasing of the Kemel ROM chip. The chap works sike the folluwing. When you write a machine langrape proprum, and you want to call a partuculas kierned ruuting, then yous address the jocation in the jurup rable that hoids the starting addreas of the swation you want to use. As a location in the jump table is addressed, it is activated. Its contents the starting address of the desired routine-is output. Thas starting address is. in turn, put on the address bus and the routine is thus contanted.

The questions arises, why bother with this indirect way io contact the soutine? Wily not first adddress the Kenow lucations directly? The answer is that the Commodore desuppers want the present trodeis to be commatible with, and operate with. future models.

As time poes by, improveunents in the operstion of the C128 will continue. Even a small change rxuald make a newer uperating system useless in an older uncted. In the interest of having new OSs wohk in older machines. the: jurmp tible scheme is uthized. The jump tahie is dessgned to standarcize Commodore models with respect to input. cutput, and memuty management in the following way.

Thuring expected changes, the actual routines are not experted to change much. But even if they do. they sbenek stit rum the 8502 MP (f and its IJRAM\& without undue compleation. What is experted to change are the addresses of the routinges. If the addresses of the routines change, literally thuusands of programs on tape or disk will become chscsele. A bot of your programuing won't work with these charged OSs. That is where the jump table comes in.

When a new Kerrel chip is mamutactured, the jump table will be located at the sanve chiqp pitaces at the bach addresses as its predecessars. The enntente of the locatioms, whuch are the addnesses of the routines. can be chasuged. That way your old progranus will stil addreas the same old places in the jump table. The sew achress cuntents will then pornt

 cama groups Each three bytes is made up of a one-tryte |ump inatruction and a fwo-bye addnose. M you edarees one If the data groups. yos are sssinuctoce to fump to the sturod ardrase
to the new address of the routioc. You won't even know the dafference as the program is cun.

I did not mention that the jusnp table holats some program addresses not found an the Kernel. Tbese offectup atdresses are located on the BASUC R()M. Thut is because the BASIC ROM chip contams a lot of programs that axe very usctul. Instead of writing some of these routions, the proxramer saves time
 gues to the jump table. The jump table, in turn, od. dresses a progrann un the BASIC ROM. The program is uben called and run saving propraseming time and effert.

Diagnostic Programs

When the C128 is completely down, then it can"t help sou lucate the trouble. When it is unconsconus, then you mass use the clectronic sest lectiriquacs re-
quared. This includes using the Test Pout Charts, the Master Schematic, etc. with tesp equipmend such as the vom and loge probe. Howeser, il the Cl28 is not unconscions. but is cperating somewhers enatically, then you can use programmisy tools like Prikik and POKE to check it out.

A short test noutione using PEFK was cliscussed in the Character ROM section. With it, every byle in the Charncter ROM can be examined. Wrth an eaght byle exammation, a character can be denved. The bits can be drawn on paper to depict the character. If a few bits have been destroyed, then those bus can be prompuinted. The chip is then replaced.

All of the ROMs can be read with PEEKs in a semilar way. In fact, mont of the mernory map can be lested by PFFFKake the mag incabooss. The ReMMs can anly be read with HEKKs, but most of the ress of the map san not ondy be PEEKed but also writfen to with P()KEs.

The C128 has 16 swelaul twemurt imap layouts. In BASTC they are wabel HANK s and are numhered from o ev 15 in dexamal. To set up iny nome of the 26 suvcules. all that is neerled as In write a propram line witb a BANK tumber. In the tharacter ROM PEEK, the first line was BANK 14. MANK 11 is the finds inycual that inclustey the charncter ROM Table 5-1 Ests the 16 BANK arrangements and the type of memory that is meluded in cach BANK.

Nose that in the claracter ROM PFFFK matase that the bunkeng can be ctanazed frump program bise to propram tune. That is how an MP(like the eight-
 orteally sddress $128 k$ in the sime program with the sod of braking.

Assway, whent the C128 is conssicinus, the fent place $\$ 0$ star lestings is in the ROMIs. Reading the ROMPs is she first test of chnice. The ROMs are the thips in conterol. If vous tam gee the MPUT 10 read froms the RoMMs, you know they are operatang. When you first turn the computer un, the MPli is buist fo ansocruatically read the srarn bytes of the K()M nperatoug proyeram. The compurer signs in by printung its RE.MI)Y miessage on the TV'screen. If ethis happens then the MPL" is successfislly fraaling from the RU)M 5]stem. Admittedy, the MPL' is ondy reading ヨ demen or su bytes. bet reaterg is gorng un. The R()M can be read, and of any discrepancies are presene. then a PFFFik routine packs it out.

Therefure. when the ROM signs in, you can use Ungnostic programe for festing the ressdents of the magnery tup. The computer is couscinns. There afe a lot nf different ways the ROM ran be tested for antact routines. The casiest way to go is to purchase deagnosti- sofi ware like the fit Ikx:tor that has been seeling for a number of yeam. Perhaps you wiok d isle to write a ROM dazgrastic. surnewhat bike the one in the fis shereor. for your C128

The idea is to test every bie in the ROMs. In sencral of progrant aus do the following. The teat is to read each hyte un a RoM chisp, byte afier byte. The way at has becon dowe is to rum each bit in each bvie thuyagh al 16 -bit shifi register. The shut repan ser as to X'0R eact incouning bir frum ROM with ats b. 8, 11 and 15 bits. As esch hit passees thriuggh, the value of the still revoster changes.

The kest number im the shiff repister is called a CRC for Cirdto Redundumer' Cherk. Because the repister is lif bats, and Inar hex mumbers code 16 bats, the test number is tallend a ferser-dugt CRC. Thas 25 an error cherciong tese used by progerammers to check the transmisssin of proscanss. Truubteahuters use it fos read the ROM

At the end of the ROM read, the shift segister is leff woth a hex value. Thas value. whirh as predetermined by rumuing the teet on at proveat (: 128 , is shen proted on the screen. If the mamber on the sereen matches the sumber of tbe knuwngood C124, then the ROM has been read and is whay. Shustd a chip not finush up with the preseribed pasmier, then the chiop is probatoly a damaged sme.

A ROM can be risatherl if any shorts of upens oceur in the bumst-in program betes or contren circuits. A test prowtarn as deacribed shouiht pick out the bad ROM quicidy.

A Short ROM Routine

In the same way that the character RoM was read. you can also read almost any section of $R(1 M$ with a shom BASLC proyram. For esausple, io the higher audresses of ROM3 are sconve jump table: numbers. The contents of the table bytes contain an address. At decimal 44917, the firs bye of a three-byte mutine called J.MP (;PLoUT is bocased. If yous desare so access the threc-byte rentince, and read the comtents of all three bytes, it tan be dane with the followisue short BASIC progeraca:

```
100 BANK 14 200 FOR X=14917 TO A.s919 300 PPEEK(N): S(OO NE:NT 500 BAYK 15
```

When yows run the prugrain, the C12k mode seremen wall show the contents in decmat:

R17
 $76251 \quad 155$

In the sarne way you can access ahmost any ROM location or grosp of locations. This is a valuahle teat
bechnique, In Chapler 16, the Cleg's mermay mans
 ran run tegt set of readinas white your Clet ie epperatigg akdy. These rearlmge, whicha will be the mantente of the ROM locations, cur tow proted roul
wo a ghome of paper. That wayr if yout ever curpect Heal a ROM has become delective, then prod could reprint the ROM and compare the beteal reading with the proveth ceatinge. If they do nol ratich, then the ROM under test has liecome defective.

8. Other Integrated Circuits

Tipent are 63 intercared clecuit chips in the L 128 . We have louked over the nine large chips, the 16 ITRAMs, the color RAM, the character ROM and the four OS ROM\& Than is a tutak uf 31 chifys, leavins a balance of se smaller support chrps. The nime large chsps. the cturacter ROM and the colur RAM whl at have more detalied coverauge later in the book This chaprer will deal with the 32 smailer sappons chaps.

The support chips do sunns important joks. Let's determine: what they are: Une jubs they du: huw to lest them of they beconse suspects durng croubleshonturg. See Hip. R-1, 8-2. In this chapter is a set of Teest Puont Charts for these clups. The charts give the kagic state of each pin on the chup while the C128 is iotlieng al READY.

THE 7406 HEX INVEATERS

There are fowr 740 fi chups: U'29 just to the left of VIC: L33 alove the esmply ROM socker at the top left of the boand; 1137 at the bottom of the boared
io the right of the PLA; LG3 abure CIAZ at Whe len side of the beard.

The 74ints are 14-pm LIITh The word hea means "siux." and there are sax little inverers built mion the chip. What is an irverter?

As you'll keam in Chapter 10, an mererer is sometimes called a NOT gate. If you iniese a loper hight into an inverter. the carcuit changes the high to a kow, and a kve will eaterge frum the sate. Showiul sou taput a fose into the inverter. it is changed to a high. Refer 10 Firg. 8-3.

Beswdes inserting the logic state. an inverter cann ace as a current amplifer and buffer to the insomisgs signal. It can rouse the current leved of the hagic state sel that the slate will math in the subserguens circuits.

The 7406 is a TML with six of these inverter stages. Figure $8-4$ show's that each inverter stage uses two nins. Only one input and une eutput are curnected to each N(OT pate. The sax inverters iegurp 12 of the thip's 14 pans. The usber (w) pins are used in : + ij volts power and ground.

Fig. 81. The Feen Point Charts show the logec states thet sthould de present on atd the chip pine The loge probe is Che device thet hes LED: which nemeal the highs, lows and pulsee clearly. No tighe is an when a pin is cristating.

The six inverters are all on the same chip, and itll use a common power input, but they are othatwise indepeadent of eacls other. The six gares on the crup are all anstaled in ditterent ascuis throughout the computer. For exampie, in the outpur lines of ClA2 there are two uwertery from 1163 and luree inverters from UJ30. In the cassetee motor line is one U3N inventer. There are four coure U63, one 129. iwo U30) and a 1137 in the 556 chip clock circuit. The clock is covered in detail in Chapter 17.

The NOT gates are sprinkled throughtuat the C128. The N()T has a schematic symbul. It is a trangle with a circle at the cutpui point. If you look over the Master Schematic, you will see the lintle NOT Rate symbols. As you look at the NOT gate you must realize that whatever sigual is imput at the

Cat: sade wil the invertere and amplifind as it emerges from the puinty end.

With the sid of Figs. 8-1, 8-2, 8-1. Thable 8-1, and a vom or lugic probe., you can chech sut the hex anverter quackly. Each inverter has its input and satput. The unly type of signal that shoukd be present at the inputs and outputs are logic states. The 7406 has no three-state capabilitues, so there shoukl not be any three-state conditionss on any of the pins under ordinary circumstancen. The input pins, shown by the arruws in Figg-8-4 are 1. 3, 5, 9, 11, and 13. The respective oufputs are $2,4,6,8,10$ and 12. Pins 14 and 7 are power.

The first check with the wom should always be pinss 14 and 3. Positive 5 volts should be on 14 and 0 volts ar ground on 7 . If cither rolage is incorrect, then is is a cloc. For example, suppose that these is no vertage at pin 14. If there are +5 volts on the surrounding ctips but not on 14, then chasces are that the copper trace on the printboard to pin 14 is broken or has a corroded connection. When the quick-clect at 14 shows power is present, then the individal inverter stagen should come under scrutiny.

Test the vollage at each input. A bish is connsidered +2.0 volis or hugher. If the mput is a bight. then the output should be a low. The low on this chip (if"s a TTL) is considered +0.4 voles or bower. When the enput is is luw, there the nutjout should have the opposite state, or a high. All six of the inverters on the chis sheruld follew the satme hugncal approwith: mput high, output kow; input low, output hudh. If the inprut athould be a pulse, then the 7406 should produce 3π inverted pulse ouspurt.

If there is a discrepancy from this pattern, you have a chuc. The inverter with the wrong output cuuld be sharsed or open. A dead short in the stape would place the imput voltage onto the output. As nipen circuit wontd plare the surrcanding vitate on the cutput. This could be ans vollage. including a three-state condition.

The inverters are all individual and are consected in many circuiss over thee board. If you frod any of the inverters not connected to any circuit, you will find vollages on the pins. L'aused mates usually bave their pans ned to +5 volts or ground

to keep them out of the actevity, and this prevents thesu from causink circcuit iattefference cturing nowsmal processsng.

THE 7407 HEX BUFFERJDRIVERS

1157 (to the left of VTC) and (1.29 (an merter) and UGO (just in the nght of the PPA) are theee and. phifier chips. A buffer/driver is siropty an amplifier. The undivadual stages in each chop are drawn in kook somethang like the inverter symbed. as in Fig. 8-5. A elose kook demmonstrates the dafference. Nin fitsie NOT carcles ate on the nointy end of the triarnule. () the cwise the symbuls are the sarse. One inpart and one outprat commert each buffer. Table R-2 provides
the iopir stmes that should be present on LY's 5 ? arsué 60
(In the Master Srthematic, yocill find butters in the vided terturulter stapess. four of them from U57 in the extriat unes of (.24. If you look through the Master Srbemalic for the liture triangles without NOI' circies then you'll be able to find theme casily.

Except fur the carcles that indicate an mperter. fos fer as trubblestuwting goes. the 7407 is identacal in the 7406 . All the nin numbers and ofleer characleristing can be cunsidesed the same. The only differeare es that these is no signal mbersion. The simpial in still amplified so in will match info the curcuts it es ionnerted to, but the some logie state that enters a bufter Elage will the masiout from that slake.

THE 741508 QUAD 2-INPUT AND GATES
UV, a smallish chip at the botton right in the cemter of five small chips, and L61, at the bottonm rizth of SID, are the two 741 s00 chips. They are 7408 ihipss with LS extras. The Lo slands for lowpower dissupation al tue expense of switching speed. The S stands for Schattky. A Schottky duude is konown for ats high speed switching. By using both in al gate. the advantages work pogether.

The quad part of the name means four. thigure. S-6 and Table 8.3 show the four gittle 凡NI) gates un the ctup. The 2 -input mesme that each gate has two inputs in contrast to the inverters and buffers
that only need one input finc. Even though there are two inguts into the AND gate, it unly has ore output. The two imputs are ANISed ingether to proctuce a lugical outpur. More detai on ANil pates is given in Chapter 10.

As AND gate requires a minimum of two irpults. It can have many more inputs but is still unly uses onve output. On the 7iLSXX there are fenur pater, Twelve of the 14 pins are used to service the gates. three pans per sate. Pins 14 and 7 are used for +5 volts and ground the the 7406 and 7407.

The ANL) gate is buit so that if will output a hish id, and unly id, buth irputs are high, as shown

Table 8-1. Four 740 chipe are in the C128.
Here are the logic states that should be prusent on eech one.

Test Point Chans				
PINS	U29	430	U37	463
1	O, 3 an	1 1*	4 mm	Lex
2	Prise	High	Mrgh	High
3	Lure	15\%	High	High
4	High	Hion	Lew	1 im
5	Pu:se	Law	P:Mso	Paise
8	(0\%	4 Hrgh	Low	Low
7	Lem	1 ow	Low	Law
8	Peise	0	Lisw	109\%
9	Pusem	-ow	$\mathrm{Hax}^{\text {ckn }}$	Sum
10	Prowe	-7x	Han	-0w
11	Parse	Luw	Low	4 G (3n
12	Patism	1 now	[0w	Luar
13	Putse	Hegh	Hegh	4.0 ner
18	Higr	Hign	Mign	High
$0=$ willoht				

 circle of the oulput end.

Table 8-2. Two $7 \$ 07$ chips are in the C128. Herre are their pin loguc atates.

Test Point Charts		
PMES	US7	U60
$!$	F.alse	$\therefore 3$
2	Falcen	4.0N
3	Lew	Haich
\checkmark	Lisw	Hign
!	Pulse	High
ε	"ulse	Hoght
7	Low	1080
8	. riw	Hegr
4	- Lise	Hogr
9	-1.gn	Putan
11	- 4 an	Hulle
12	- 7 (1a	Tuls
13	1:3N	Hutse
1.4	High	Hy/

 funs be low. the ANI) wall: not autpat a hugl: I: sianply acts as an open carcunt.

The af the is dNil gates san be faund an the wing between the two MPUs. Three of the U61
 of the 8502 . The fourth (661 gute is at the $\Lambda E C$ pin of the MMU. Nute that the ANI) gates do not haves any NOT circles. There are other hariet shaped sym. bols that link tike an AND gete bul have circles at their rounded culpuat. They are NAN!) gates dis cussed later in this chapter and in Chapter 10.

The other swu Us gates are found by bookng for the budlet shapes in the Master Scheraatic. One is connected io pin 26 of ROML. The wher one is in the 128ik4 circuit linc. Table S-3 lists the lopic states that should be present.

The AND gater are used an handy control devices in send a high to various termixals to turn

Table E3. The logic states on the two 741508 an shown.

Test Point Charts		
PMWS	บ	U1
1	Hogn	Fing
2	Puige	Pulse
3	Pliten	Pulse
4	Puiso	Pulse
5	Hoph	Mrgh
6	Pulse	Ful0e
7	Low	Law
4	Hign	Puls
9	Hrgh	Pulse
10	Hign	Hizan
11	Prulse	H29
12	Pulse	450n
13	Pulse	H等
14	High	H.g.

chips and circuits on and uff. A triggering high will be catput when two bighs are aypulied to the inpuls.

THE 74LSOO $74 L S 03$ NAND GATES
1133, 74 LSCO. in the bettenm nght-hand side of the pristboand; and U58, a 74L.S03. shehtly above and to the lett of U'31: are both quad 2-mpus NAND gates. Both are illustrated in Fig. 8-9. The man difference between the chiggs is that the 74L503 has an open-collertor outzut while the 7SLNOO does not. Sctrematially they are drown the same. When yoss test them, using Table $8-\mathrm{S}$, the tests are the same. What is aus open collector outpus?

To begin with, all these 74 . . - lype ctups are "M.s hased on bipolar tranasistors. Bipolars have cot lectors as their custput electrode. After a sate logirally pmeesses the upput bits, it is ready io output the finisbed product thruugh the output collecsor of

 and drawn getembachenly in this way

Table 8-a. The two MAND gates with differomt numbers. viren okay, wh probo out whth these Jogic states.

Test Point Charts		
PINS	74L500, U31	7\$L503. U5S
1	Hign	High
2	High	Low
3	Low	+-7
4	icmi	Low
5	-4.g\%	tow
f	410	Hath
$?$	- 0 w	-10w
8	Pulse	righ
9	$\mathrm{p}^{\text {Pase }}$	10%
\because	Hygh	thyl.
11	High	High
12	Lura	Lera
13	Patice	! mN
14	+-9\%	

she stage. With open-collectere chrops the output transiator is made much freftee than she rest of the tivy Itursistons in the gate. These outpun transintors are buith to put vut a relatively large \mathbf{W}) miltranuperes of iurtent.

The meermal collecter nutput resistur nurmally found in alhip that does nout fearure openrollecturing, is left off in the agxen-collectar sircunt in chsps with the fealure. An external cisutete pull up or load resissor is mstalled on the prinibosard tor every apen-collectur output. That way tive chip tan hawde the extra currents.

If you look on the Master Scimematue and fund U58-the 74LSKX3 with the open-enliertor featureyou"ts find pins 6 and 11. two of the coutputs, connected to the pull-up resistors. RP2-2 and RTr2-4. [:31, the 74LSO0, without epen-cullecton, has no pull-up resistors in its cutput lines. It doesn's need the restatons because the collentors are prowered internaily. Figure $8-10$ shows the way in which the open-collector output transistor is wired.

As first phanoc the scleenxatin: draving of the yuad NAN() gates looks 刻e the quad ANT) gate. A closer look reveals little NOT circles at earth outpoit connection. The NOT circies change the AND pate to a NANIJ, short for NOT-ANI). As yade read (Thaptes 10 you'll fond that the NAND gate ourpits are like the ANI) gate except that they are NOTed sinserted). For example, the ANI gate will only cartput a hiph if all isputs are lagh. The NANT) gate wid (only outpust a low if ath inputs are hish). Any nther combanation ut hiy)s and bows at the NaND mputs will output a high.

NAND gutes are specad. It is mouth more than the ratur insiles. an IVI) gete with an buverte. Tise NANIJ gate is the main TIL logis buidiogg block. All TTL , thips start tnet 25 NANT gases. Any desined type of gate or regiater chip can be cionstructed trom the basic. NANI) gate. The TII mtemal circuits are composed of bipolar transistors, diodes and resisfors. There are TTL transistors with muluiple emitters, ordinary transistors with sinple enitters, pm jurctions acting as diodes, and ting integraled circuil resisiancers.

The TTL emitters are lied to the input pans of a chup. If a gute has Iwo inputs then the TTL has

two exuiters. Showd a yate have three or mare inputs, the TTL, will provide thece or mone emitter inpute-whatever is called for. The cthees bipolar transastors act as inverters or buufers.

The basic NANI) circuin that is userd on TTLs. shruen m Fig- 8-11. curisists of five internal circuns. The forst circuit is an ANI). The ANII has mullipte emitters. The AND gate will ontly output a hegh if the inputs are all haghs. The ANI circuis output is applied to a NOT circuin. The NOT inverts the ANT) coutput. "The NOT also amplafies the current of the strami.

The sagnal is then split in ewo. One pattoway is Hurnugh a noise ammunty budfer. also calbed a YES fraie because it dues not change the fugic state of the sigonal This YTS. gate putputs to a second YES gate that is buill to amplify the signal if if is a high. The secuad pathway passes the samne sqgial thmugth vill another YRSi gate that ia buitt io anplity the sis.
nal if it is a low. The two final outpute are jouned tokether and output their results. It can be scen that the outpur ends up 35 an amplified NANIting of the inplu: sighais.

The four NAND gates in the 74LS(K) and the nether (our NANL) gares with open-coblecturs in the 74 LSO are coonected to a mumber of different cir. cuits. Six of them can be recoynzer because they xxik exartly inke : ix thliket shazer: ANTS, wiecpt they tave NOT incles at thmer cutpuls. The four 1588 secthons are all clustered arcund the serial bus C.Nfi and the insernal serial bus CN7.

Two of the IJ3I are easidy found, one in connected neap the MMU-PLA circuiles and the other one to the cleck and MMU. The other two are not edsily found. They are dasyuised as OR gates fdiscussed next) with NOT rircles at their inpurs. This is an alternative way to draw the NAMD) gates. Figtre R-12 shows the solhenzatic symbols normaily

 end itrma YES gates

 circuil you will hind equivatent NANO as sean herc.
ased to flepict the varnous gates. These two differently drawa NA, VIs gates are part of the efleth circril cowered in Chapter 1%.

THE 74F32 AND 74LS32 QUAD 2-INPUT OR GATES

19 and U54 both consain four OR gates. U99 is located between the 12 KK RsM set and the PILA. It is above the character ROM, U18. U/54 is found just to the Jeft of the viden metal box in the upper left of the boand. Froms al truubleshooting poits of view the iwo ctuips can he considered idensiral even Thuugh one has an 8 and the other has an L.S. The ; are both froms the 74822 family. Note the shape of the OR symboli in Fig, \&-13. It is samewhat like the AND except for the pronry ouspur end and the rarved mpat end.

Iogical OR i mother woy that bits can be mariquiated. While the AND) gate will only output a tagh if all inguts are hugh, the UR gate will only cutpur a fow, if all mputs are luw. It too has iwo ur mone thonits shat cumbenc to produce a single sutput. Ituwerect, of $^{\text {any }}$ of the ioputs are a high thesp the ourpurt will bee a high. Only when all enpues are buw cass an ()k gate ousput a low.

If you hook on the schematic for the U9 OR symb hois they mughe be hard so find. They are drawn on the altematrye way: as AND symbols with NOT circles at thers inputs and ostputs. Two of 1.99^{\prime} s sym. bols are found at the inputs of the cwo 64 K RiM sers. Thee sther two 119 synmbuba are at the nurpul of the PLA. The two at the PLA output eact iapul into nne of the invuta sf the two st the RLM inputs. Thee OR gates are aidlung in the rhnosing of which KAM sets are tu be ased.

Trio of the 1?54 ()R gates are to the videro conIroller tastput circuir thas beides throught 1124 A drver stake cuvered later in this chapter-to the RCBI output port. ©T54 ORs the Monoxtremme output of the port.

The 7432 fatrily of OR chips are alsu 14 -pro INTPS honsimg four gates 这e the 7408 ANI chip fams. The nin kyyurs are idemtical woth the poper, mputs and untputs atd on the same pirls. If you are doving a lue of testing an these pions it would be use.
ful tu memorize the prower, input and तutput nurnbers. The lesgic states on the pins of U9 and U54 are in "lable 8.5.

The NOT, AND and OR gates are the three main kyiral functions in cigatal electronicy. Others, wuch as NAND, NOR, Exriusive OR and Fxchusive NOR. are alt rovered in Chapter 10. The nuin three NOYI", AND and OR are the basic gates. These three can be combined to furm any of the lugizal gates. If you cutubine NO)' and AND. then you louve a legitimate NrN(). Sirould you put cogether a NOT and $O R, \& N O R$ is created the exclusive type gates. caa be produced thy winne NAND spates topether and

Fig 8-13. Tho OA gmes look sometring tike ANOS sul with pointy ender.

Table 8-5. The two On gates heve the fallowing logic states on their pins.

Test Point Charts

PNS
74F32, U8
74LS32. UEA

8	Pulsa	Low
2	Puiso	LOW
3	Pulse	Low
4	Putse	Pulse
5	Hign	Low
5	High	Pulse
7	cow	Lnm
8	Putre	Low
9	Pulge	Low
16	Putas	LINW
$1:$	High	Putse
12	Putas	Putre
13	High	Puise
14	Migh	High

placing a NOT pate where needed to invert the logic state.

When you are treubleshouting, though. you do not pay much attentivo to the overall gate. that is created by wiring a mamber of individual gates together. You simply test individual gates un a chop.

THE 74LS74 DUAL D FLIP-FLOP

The cluck cirevai of the C12\& uses a 74LSi4 chip: U56. The ctock is discussed in detail in Chapter 17. The flip-flop acts as a momentary storage device in the clock. It is a 11 -pin DIP, illustrated m Fig. 8-14. It is found in the bottom right side of the bnard in a group of five small chips, between US and U31. U56 contains two Iip-Mop circuits. A lip-lhop is a sturage circwit, unlike gates that simply manipufare ingic states. A flp-flop stores logic states. The storage in static RAM is accomplished in (tip-larns.

The fip-flops in the 74LS74 though are there to store a state for valy a fraction of a micrusecond

Tig. ER Fip-nops *Re logic stat storige devicus.
and then chargee states as it dip- Dups. More de?at] is given on thes circuit activity in Chapter 17. Figure 8 - 14 shows the lowge states of the chig. There aree six conmertions for each fip-flog and fwo terminald, 7 and 14 for grousd and suyply voltage.

THE TALS138 1-OF-8 DECOOER

U3 bs a 16 -pun DIP that is lonated just to the left of the 8502 MP 3. Is reneives three addreas lines: A11, AY and As from the shile. These three address times are able to form erght differcht combinations. The chop ts a 1 -ol- 8 decader. According lo what bita enter the address line inputs, 1 of B ousput lines eruil a bit. The bit that is emitted travels to a cluip-select pon of chigs tilue the two CLAs, and selects one firs uperation.

The chip arets like an assissant to the Plas. The ctups that the Plad doess not have the capacity to serect. the 79LS138 decoder chip will.

The Master Schematic shows a scherametic closeup of U3 Note thas \$11. A9 and A8 cnier the chip at pins 3,2 and 1 . The narnes of the pins are A, 8 and C. Firsure $8-15$ is the scthermatic of the internal wirng of (13. Not whown are the actual tramsestons. dicuks. etc. that each gate is composed of. Fou can lorget about the actual components in each gate and comsider the gates as the parts the chip in asade up of.

The decoder works in the folluwing way. The three imput address lines are able to necelve one of erght combirsatiuns of bis.. They are LLL. Ll.H, LHL, b.HH, H1LL. HLH, HH1, and H111I. Each one of these input possibilities can be decoded in the internal gates su that one of the eight cuatput lines wits prat out a resuleant bit. The eighs output pins are sumed y'7 throught Yo.

The Tillcil38 is a 16 -pin DIP. Besides the three inphat address linees and the cight output select Enes. there are threce input esable pais cailed Ci1. (i2.A anud CiUB. The ussal 15 voll impot and grouend are at their pin stativass and power all the circuits m the chup at the same time.

113 works through eight NiND gates. Euch NANII gate outpars lu sme pin. fior examule. NANII
number 0 ocstputs so pion Yo and N゙AND number? autputs to pin Y7. Each NAND gate has lour inputs. Thre NANI) isputs are cossung from the three addressmg and threc namble inputs. The three caable pins. G1. C22A and G28 are wired to an ANI1 pate.

Let's examine what happens in this AND) gate. first of all. the output of the AND gate conmects to one of the four NAND) iaput lines on 鹃 eixht NAND gates. In order for the crable circuir to be able 80 turn on the NANI) pares. the erable AND gate mast cutpot a high. (f the ANI) gare outputs a low theat none of the NAND gates will operate and the chip will bie durmant.
$G 1$ input is connected $t 0+5$ volts which is a tuxed high. The lagh coters the chip and encounters a NOT gate. The high is inverted to a low. It then runs into a NOT carcle, however, and is made a hipht again. The high then enters the AND gate and kexps that ANL) inpet in a hight state.

The G2A chap input is cuming trom the PLA. yin 38. This PLAA signal is called-lOCS which in a lnw (note the \bullet). As thls low enters Giad, the first compunent it meets is a NOT cincle. Tie NOT inverts the luw to a high. The high caters the AND gitle. The G2B input pin is aming from U31, \& NAND gate.

The NANI) has (wo inputs. Ope frum address fine AlO and the other from the $\mathrm{Z80} \mathrm{MPU}$ pin called -M7. When Li31 recerves (wo highs at its iquuts, it will output a low. That fow enters G28 and finds is is at anuther NOT crocle. The low is inverted to a tugh and enters the AND gate. With three inpul hothe, the ANT g gate will then ulyont a fugh and pass a figh enablings sisgnal to the eirhe NANI) gates ul the chip. The chip with then be ible to operate.

Mearnwhile. down at the address lines, voe comboravon of three bils is entering. These bitas sow are in cuattact with a parr of series NOOT pares. As each bit passes thruugh two NOI' gates, it ends up heing inverted twice ins the amme state it began. Note that irs the output of each series. Nitr pates are connocted to four of the cight output NANI) gates.

Eact two senes N()T gatces are connecied. An address bit that is tapped off in thim way, between iwn) NOT Rates, has its state inverted. Therefore.

tacth voe uf these tapped lines nomtains the inverted suatc of the address bit input. Note that each one of these lines is connected directly to four of the sight NAND gates.
fiach NANI) gate thus receives four uputs. One snput is from the enable AND pate and three inputs are from the address line isircuits. A NAND tare turn on ambl output a bow when all four of its mpars are high. Table 8 - 6 is called a Truth Table. \boldsymbol{A} way to describe a fugh is by calting it a TRliE. In the same way a low is called a FALSE. The truth tathe therefore is nothing more tham a listing of inputs, and iben the outputs resuitang from the unputs. A truth tabie is the listing of the highs and lows involvest. Tabie 8 -6 shows whuch NANI) pate will furn on whea UT3 is cmabled and recerives three bits from the address lines.

Let's follow onc set of mputs to see which NANL will turn od and nutput a low, using fig. 8-15. When a NAND is not tunned on, it wit simply hold a high state at its output. Fior example. suppose inputs C.B and A are LPHL. (The three cnables in thes case must he HLAl. dunng operation.) When the fow al C pin arrives, it theo passes through a NOT gate and becueners a bigh. The high is frst tapped off berween the two NOT gates and sent IU NAND gates 3,2,1 and 0 .

The high also passes through the secund NOT gate becomes inverted to a Jow. and is apphed to

NANII gares 7, 6.5 and 4. This fow shuts down the operativn of thesere four NAND gates. The other four NAND gates 3,2.1 and 0 row bave two hughs applied to their four imput lines. One high is from the enable circuit and one high is trom the C address inupt line.

At she same time, a hugh is amiving at the 8 address ingut. The high passes through a NOT gate and becumes a low. The low is tapped off sand sent to NANI)s 5, 4 and 1. The fow surns thems off. exob. Huwever, the low also contiruca straight ahead and passes through the secxond NAND gate in the \mathbf{B} line and becomes a light. The high is then wreed infol NANI gates 7. 6, 3 and 2. 14p to thas point, all the NAND gates except 3 and 2 have received at least one low which has turned them off. Only 3 and 2 are lefi The bit that entery through the $\boldsymbol{\Lambda}$ address tine will chuose one of the cemaining two gates ta be the firul output. Ondy one out of the cight NAND; will be permitted to output a chips selection bit.

Fintenng the A tine is a low. If passes through a NOT gate and becomses a high. The hugh is appleed to NANI)s 6,4,2 and 0. The only one of these four cutput candidates without any lows is number 2. With this additional liygh applied, number 2 now hass furer hisghs applied. One hisgh is frum the enablings circuit, nome fom the C address line, ane from the 8 line and une is frum the A fine. Therefore number 2 NANI) will turn on and output a low. accond.

Table B-8. Truth Tabic for the 7atsi38.

Inpuls						Outpuis * 0 (held high)							
-EI	- E2	E. 3	AO	AI	A?	0	1	2	3	4	5	6	7
L	1.	11	1	1.	1	L	H	H	H	-	1.	H	H
1	L	H	H	-	1	11	1	\because	H	11	${ }^{\prime}$	4	H
L	L	11	1	H	1	H	H	!	H	-	+.	\checkmark	H
1.	L	H	$\stackrel{+}{+}$	H	1	11	1	11	1	H	+	4	H
1	L	11	2	L	H	H	H	4	H	1	${ }^{+}$	4	4
L	1	11	11	1	H	H	H	H	H	H	-	H	H
L	1	H	-	11	H	11	$1+$	11	11	11	4	1	H
1	L	H	H	H	11	H	11	H	18	11	11	H	1

Fig 8．9．In occoder should show thess fogic stares
ing to lopge．At the rest of the NANT）s have at least cone low appliced，do not turn one，and their osutput pins reman held hixh．In the C12s，when number 2 out－
 The $856{ }^{2}$ ch chp is the 80 －columen Vidco Controller． II enters＇ltse 8563 at pim 7 which is called $\cdot \mathrm{CS}$ ．This is the chip－select pin for the 8563 ．The 85633 is dis－ ruased in Chapter 21.

The－CSB5．63 low sligual is 1 －of -8 symals the in－ puls bo li3 car produce．The otber stonals are $10 \mathrm{O} \%$ －1／OI，ClA2，CClAl and •STD．If you want to prac－ lice understanding this devoder chip，then yuu cuuld trace all the input bit tsion and see how cach 3 －bit auddress will chorose one of the output siguals．Fig－ ure 8－16 is the Tress Puint Charl for the L13 chsp．

THE 74LS257 MULTIPLEXERS

The C128 usex three 74LN257 chips to do mut implesang jobse． 1171 and 415 are lound fast to the right of the 1288 R RAM chips．They work with the
iwo banks of 64 K RUM．fi25，the thind multipke wer． es heralted two chaps to the right of III4．It operates with the VISC．

These multiplexers are 16 －pen DIPs and are called Quad＇2－lsput Mulliplexers with three－state s：apabilty．The threce－state fum：tion mears that the fouer intividual smultiplexer sections on each chip ran be completely put mito a standlyy three－state coudi－ um with as single mut bie．Each chop is able to ad－ dress cight lines．Two of these chips can control the 16 address froer from the 8.6 ．it 8504 MPl ．The se are C＇14 and 15 in the C1z8．The two unuluplexers wivk with G－1K of RAM at a time．Whichever RiMM band as chosen at a particular moment，the mul． tiphexers handle the aditressing clumes for it，

In Chapter 6 the 4164 RAM chips were covered．They are 16 －pin LHIPs，and right of the pins are used for incoming addresses．These eipht ad－ dress lames are given the job of handling 16 address lines，A15－A0，from the MPU．The way the $416 \mathrm{~A}^{\prime} \mathrm{E}$ bindle． 16 address fues is by acceptias only cight at a tinxe．The multiplexers take care of seading ejght address lines at a time．This 施 what muluplexing is．

Figure \＆－17 dirgiays how the two 71Laxis7 chups accepn 16 addsess lines and nutput to a 64 K I）RAM sel cigtu bincs at a time．Figure．\＆ 18 shows the gatcs in ad 74L⿱乛龰卜257．There are four inpur－outpul circuts in the chip．Earts rircuis contaius（wo AND）grees and unc OR pate．Euch of the ANI）gates in a section has one input combrge from an indress time．This wn－ nects eipht address lines to the fout circurts．
loet＇s examine one seclius with swo AND and me OR patc．Kiarl ANT）las eme ingot from an ad－ dress line and a second input from a chip selert pin． In the chip select line there are two NO）T gates in semes．There are two nutpuns trion the select line unc from a tap betweed the two N（）T pates and the －anond afier the two NCIT Raries．The cap lane is con． nected to four of the ANI）pates and the otbrer line to the remaimng fuur NOT gates．This mates the two select line cotputs have oppusite lopic．states． That way．when one select outpus as hight then the other is low，and vire yersa．Therefurc，one wial se． ket whale its opposite will not．In the C128 you＇ll find pin 1 in the select and is raliod esel．a．

 address DRAM row locations and the oxher eight bits odrorese ine column locatinns.

Fig b 14 instas : \% multialexea bit In toices iwo chips to herdle the 16 addross lings in the Evat

Table 6-7 The 74 S 257 Truth Table has the difforont Input-output possibilitem.

lsside the ctop the ANI) outpul goes to one of ite OR pare inputs. The ORs are three-state and have their threc-starte ounnectiuns wired tnkether. The theee-state sigunal enters at pinl 15 called. E for errable. It is technically known as the Outpus Cinntrol pin. When a high enters at $\cdot \mathrm{E}$ the chip outpuls fou into al threce-state hagh impedance condition and there as no ourtput from any of the O)R gates. The truth lable. Table 8-7 shows all of the different mpuot and curput ctuxtitions.

These multrplexers typically perform in the fot lowing way. If you reciall in tbe RAM chapter, the 4168 snemory matrix is laid out in a gerid of 256 rows and 2 5ixi columms. Each sow needs cighe hits to ad dress 256 fucations an does each columm. The 16 address fines are cunnected bes the 16 address pioss on the (wo mruitiplexer chups.

The address hits arrive, In addrixua, a select but arrives 800 . When it is hugh. frour of the AND gates of the cyght on the chip are turned om. Becranse there are (Wi) chipa, eight AND gates are lurned on and cight bits are outpuried through the OR gaies. These bits could be the ones that addreas all 256 rows un the [URAAI set.

If the select bit is allow, the exght AND gates that were ungo off and the ones that were ofts gn on. The other eipht bits of the 16 adaress lines are then passed taruugh the (OR Rate innd address the 255 columns of the 4164 ctuips that are in operation at that moment. Fwure \&-19 is the Tent Point Chart for both Lil4 and U15. Their lopic statew appeas the same nos the probere.

THE 74LS373 OCTAL LATCHES

t:12, one of the extal lationes, to located at the briom richt band curner of the pranthoard. ©117, the

C128年 nther netal latch, Is just to the left of the PL.A. U12 is the latch that onerales with the ZSO MPII. The ZAR rannot directly mectace with the rest of the digital cirnitry. The circuits are designed in work with the 8502 MPU. In urder to intertace. the tiso needs the helpo of UI'2, and also U1.3 which is discussed sexe. 1117 is also a 7415373 and is frend In the V'KC envircmament. Benh ULL and 1117 are discussed syain in the Zax) and VIC chapters.

The 7415373 is a 20 -pin LHP. Figure $8-20$ is a schomatic drawing of the chup. There are eight firpflops insude the 子atch. They are said ke be "transparent." This means that the output immediately folluws the input as fong as the ctip is crabbed. The - tmbling signul in a kigh.

A signal passes right through the chip, from an irquit to an output when pan 11, emable, is tigh. When cenable is inw, the chip does the latching. When enable is Jow. the ejght hight and lows that enter the D inputs get Stchedi or stored in the tip-fops. The way that a liyp-Ulop wheres a hagh or low is covered in Chapter 11. When the enable subsequently mees hikh, the biss that are stored are then transferred fil the output pens named 4 .

1117, at pin 11 (eaable), is strobed by the VIC ungiuated signad - RAS. When - RAS anves, it unlatrhes asy signal that mighe be stored in the fliss Rengs. Pin 1 giges the chip a three-state cuntrol. If is corracted to slse system AEC Eme. While AFiC is lreld hish. the chip three-states, which is adse called a high impedance stare. The chip simply plays drad. Then when AEC gover leve, the chip is dwilkened awd iv free to consturt its dava transfernot dutims

The latch io a staging area for the adiress bity that enter the eighs lnwest address lirses of the color

KAM. It ands in the chousing of colors for the charas. eer blecks in the TV display.

A hatch a a simple devioe. It is able to temporar. ily store bits as the bits pass throuph the digital cercuits. A latch could almust be thought of as a form of static RAM. Figure 8-21 and nis Table 8-8 provide the logoc state arrankeraments when to the $\mathbf{~} 728$ numbe

THE 74LS244 OCTAL DRIVERS

The Clis has three octal driver chips with the same generic number: U13 ts pasp above U12, to the night uf the Zou MPIJ; U24 is in the unden bux to the right of the 85563; U62 in so the imnsediate left of the MMU. Fusure $8-22$ shows the pin layrut. 'Iawee $8-9$ has the lowe states.

The chiges ate $20-$ pon UIPs. A dmers, also catled abujfir. is an amplifier. Usi and 1160 are alsor mutiers, but are hex butfers. These chips are actal, whind means that they contan cishtt individual am-
plifiers. The 741.5244 has another feature. If is alsu an isiverter. The chap has eight input lires. $2,17_{\text {. }}$ \&, 15, 6, 13. 8 and 11 . These imput Hines connect to their assigned buffer, as shown in Fig. $\mathrm{H}-22$, and then outpat to theis respective pens, 18, 3. 16, 5. 14. 7. 12 and 9. Pias 1 and 19 are inputs for a lhrecestate signtal. Each pin controls leur buliers. Power is supplied at pin 20 and grournd is ns pin 10.

U13, as mentioned in the last section. works with lateh $1 / 12$ to interface the 2811 to the 8500 de . stapled circuitry. The mteriacing will be covered in more detall in Chaplers 12 and is, hut for mow bere is an overviw on what is bappersng. Kefer to the Masles Scbernatic.

In order for the Z(8) to tuse the 8502 cietuits it muse control the addreas and data bus lnes. Thes: both are pomp to use the sume lines. The addess lines ate casy to harndle. The Tro has buak-in tristite circuits 80 turn off she address liees. The Zand cans be stolated by simply tristuling addreas lines. The rata fines. however, are harder to manage.

That is where the laterin 112 and the buffer U13 work. Durring a read, when data brts are traveling from the meanory map to the 780 uver the diea bus, the data is lurctred into $[112$ and then, when needed, passes on into the data lines of the $\mathbf{Z 8 0}$. During a write. when data bits are travetiog from the 780 to the menory map, the data enters U13. The data is then auplifiod and passed out to the data bus. D7-1M. Hetween Ui12 and U113 the system data bus is interfaced to the 2800 . The 85012 tass no troubse with the data bus because it was desipned for the Ritie.

U24. another 74LS244, operafes in the 80 column RGBI output bmes. Its pins $2,4,6$ and 8 re.

chip. Inside U24 these dypizal videu bits are amplified and matched directly to the R,G,B and I pins on the output port.

In addrionn, laps from the R, G, B and It ties are scnt to a network ur OR gates, buffers and transistars. These components mix and amplify the
 walted Manochrome. Monochrome is a blact and white video representation that is avalable as an BGechuron curtput at pin 7 of the output port. This can be fed tu a monochrome monitor and will dis. play the $\mathbf{~ M}$-columas output.

The third actal driver. Utiz. ia sirting next to the MMU! and works with eight pins af the MMli. one of the functions of the MMU is to generate the

Tolole 8-6. Two 74LS373 chlo are in the C12 ${ }^{\text {en }}$. These ore the logic stale nudings.

Test Point Charts		
PINS	U12	U17
1	0	Plelse
:	0	Puise
3	PLisk	Puly
,	ρ_{0}	Polse:
5	0	Pusem
fi	0	Puse
7	Prise	Puste
A	Putien	Puise
9	\bigcirc	Puisa
13	Low	Lew
! 1	P1:80	Pitse
:2	0	Pulan
13	Putsp	Pilse
:4	PJiso	Pulare
+5	$こ$	Pulsa
15	-	Putse
: 7	-1)319	Pulse
; 8	sulse	Pusan
19	U	Pume
20	Hipri	High
0.		

Transtated address output linem. There are enght of them called TA8-TA15. They exil the MMU at puns $3-10$. Thesese sgnals are used as an input to the mus. tiplexers instead of the asual A8-A15 Gines. This in because they must be Lristated in the MMU during the luw of a signaif called AEC. U62 has the job of receiving THA-TAL 5 siphals and bualfering them. The signals enter the input lmes of 1162 as TA8.TAl5 and exut the output lipes as A8-A13.

THE TRANSCEIVER 74F245

¿55 ks located on the printbourd just to the naght of ROM3. It is a 20 -pin IIP. It is called a trancreiver because it is ahle to receive or send signals from both its inpuls and outputs. That is, its inputs can be changed to outputs and ins vulputs can adso be changed in mputs. If you fouk al Fig. 8-23, the Test Point Chart. buu can sec there are 16 buffers and
two ANI gaies. One buffer is used for every input and output line. The signals can travel in both directions tike the data bus is able to move sifmals. The two AND gates arc thene to tristate the buffer sets so there are no conflicts of signals. One AND gate can tristate sigenals sumg in one direction and the other AND gate can tristate sigmals going in the other direction.

In the C128, pins $2-9$ receive addrens lines A7-A0. see the Master Schematic, Inside the chip these digital bity can be amplafied and exit through yins 18-11 in nermal fashion.

Besides simply sending A7-A0 on its way, U55 is also able to reverse directions. After A7-A0 passes through UYS5 it becomes the shared address time: SA7.SAO. It is shared by both the processor and VIC with common circuits like the characser KOM and the color RLM. However, daring a signal ealled -DMA that as applied to pien 1. the internal ANL) gate tristases the forward direction and the reverse direction is apened up. The SA7-SAO lines force their bits in reverse. This permits external circuits like an expansion lartirdge to address the sys. tem RAM and ROM. That is why a two way transceiver chip is needed in the circuit.

THE SCHMITT TRIGGER 74LSI4

Uil6 is a Hex Schmitt Tragser chap. On the bourd it is immednately to the teft of the 85002 MPU. It is 2 14-pin DIP (see Fig. 8-24) and as the name states has six trigger circuits-ill of the inverter type. The symbol of the trispers is fike the NOT gate, except that a box-like shape is inside each triande symbol.

A Schmitt circuit is a circuit that is designexd to outpur square waves. In digrail circuits, onfy square waves are to be used. If a sine wave or some other waveshape should be applied to a digital circuit, then trouble ixuald occur. Therefore, Schmint trigger circuits are placed stratequcaliy in series in diggital circuit pothy. They receive inpur signals and ensure that the signals are cutput from the trigger circuir in a square wave formas.

Fygure y-25 is a aquare wave. It is the wave formed by graphing voltage in the vertical axas and frequency or time on the horixontas. The wavestape

Fiof ezt The three 74L5244's all Mave shis pir aramgomans

Table a-9. The logic etales on the threp

PINES	Test Point Charts		
	U13	U24	UE2
1	Higt	- 0 w	H (ạ)
$?$	0	-uw	P.iss
3	Fulse	20w	1-138
4	\bigcirc	100	P. Jue
\pm	Palan	Fucke	Fulsm
5	1.	130	P. H ¢\%
7	Pl.sen	Livo	Stulser
8	\bigcirc	1.-\%	+
9	Pisen	F.alser	Pusar
16	Len	Low	- 0 W
1	0	rulse	PLber
10	Palga	Luw	TLISH
13	-	. nw	¢, \%gn
14	Putim	-13w	F-uese
- 5	7	2 tatgr	H.asm
-	Puten	"utse	Puise
\bullet	4	-Da	Pare
$\cdot 3$	2 LuF	-no	Tulse
-	torn	-3a	High
2	Mign	- 1 igh	14.0
- Wh			

las names for its farts, The wave, if wewed on a scoppe. traces ous the shape in this way. The first verticail line ion called the rising roder. The lew hormantal lime is the high. The second verticed lise is the follinge edke. The bettom lerizantal line is the iome. Nate that the hight is at +5 volts and the lurw is at 0 voles.

In the cranuuter all ot the sumats slat are traveling through the digital circuits are furms of square waves. Acthal naug and lating edges are not strmaght up and straikhe down. That worsld mean the ctargess were tatring plare in no tinoe al aill. The rising edge incrually shopes sormewhat to the raght and the failing edge to the left.

As long as the slopes are slight, the duratrous. are that and the slopess and durations afe jowned in a sharp square point, the waveshape man he pru cessed satisfactorily, the the dgraal rincuats. Shruld the
waveshape in question be a slowty prorying irregular pulse, then the digital circuits carnut handle it. Thas ix where the 743 \$14 cumes in. It will take a poorly defined pulse and output a spatire wave.

In the C128 Schmitl triggers are instanled in the Sollowing places, and are shown on the Master Scivernatic. First of all there is a erigger wh the 9 voll ace line that comaects to the TOD pros on the two Clis. The tritoper simply takes the 60 Hz sine wisve and changes is to a 60 Hx square wave. The 60 HI originate af the electre company. The TOU pin is comnected to she Time Of Day ciscut in the Clls. The square wave fincks the Trin cinvil in trme: wath the electric company wo that the computer's clock will nen prectisely on time.

Two mone Sxhmit lnguters are placed at the in ternal seriul purt circuits. The ingpers buth output intu one anpot of two parts of Li58-a quad NANL). The rriduers ersure that the senal bus is only movirss square waves and not other ill-defined pulses.

Two trure triggers from $\$ 116$ sre installed in the RESET and RESTORE' circuits. They are to the lines that lead so iwo NOT gates from 1337 and E:30. All of these ingrers ane instalsed in circuits that are on the fringe of the digpital circuits. At these plances the square wares are in contact with nther types of wave anul must be clearly defined befoce allowing them into the digital world. Nommally triggers are not neederd uoxe the square wares are deep into disgital lesntory.

THE 4066 OUAD BILATERAL SWITCH

There are (wo 401066^{\prime} 's in the: C12AB. LT2 is lowated on the printboard next to and on the right of the MML: LI20 is found next to and un the right of the VTC but vulside of the video bay. U2 is connected to the two control ponts and imputs to SIL). tizo is installed betweren the color RAM and VIC. It kamdes the color ssenal that VIC reads out of KAM.

As its name implies, there are four sections to the 4066 and the sectons are switches, shown in Fig. \$.26. They are four en ofis swithes, efectromwally cunsrosled. They are handy to control data type theses or select data in other ways. Each of the four switches bave three commectons. There axe, first of ill twu I,O lines. Sigral can fow in these tines

TEST PDINT CHART
455
74F 245 TRANSCEIVER

either wary. The 110 tines for the A section are pins 8 and 2. B section are gins 3 and 4. C section are pioss 8 and 9 while 1 seevtion are 10 and 11 . Nuthing is mystermus- these are off-on connectims.

The third comerectorn is the uff-ut cunturd. Whers you want to close a swirch, suu cumect its contmai comsertion so whigh. If sou want it permanessly
closed, then attach it to the supply voltage, pin 14. that is supplied with a steady +5 volts-a high.

If you want to open a switrh, then connect its cuntrul cunnection to a bow. Shusald you want a permamently sipen switch, then curuect the controi fun to the fround or the chip. pin 7 . This low puts 0 volts un the constrol and the switch will not chose.

Fig. 8-25. The engite sguar wave is a voriage level inal passeas
 cranges idwele from of vols to - 5 volls and bech

The control pin for the A switch is pin 13. The control pis for the \mathbf{B} switch is 5 , the \mathbf{C} switct is 6 and the D switch is 12.

These 4066 switches are faisty ruaged. They can take a supply voltage up to +5 volis. The CLizs only uses +5 volts. The only problem with switches in sensitive dhgrtal rircrits is the static clectricity that can buibd as the chops do their switching. If the 4066 does fail, it is usually due so this problem. They can be tested gruickly with a logic probe or vom using the 4066 Teat Point Citart. Table $\mathrm{b}-10$.

THE 556 DUAL TIMER

127 is the only 556 chip in the C128. It is $10-$ cated on the printhoard gust below and to the beft of SID. As its name inuplies. two sepmate tismer circuits are on the chip. One of the timers is in the - RESET circuit whie, the other is in the -NMI arrangement. They are connected as shown in Fig. 8.27

The timers itre used to clock our cycles as the reset or NMI interrupt is contsollicd. These timers are able to tione events rangand from a microsenond 10 bours. They are versatile devices and used in many applications besides thone in the C12B.

Fach timer is based un a flip-llop storage cir. crit. The single FFF in one timer can flip-slop once
or a large number of tirnes according to the cantrok appred. The control is piven through comparator circuits, as illustrdted in Five 8-28, the Test Point Chart.

When a section of the 556 is made to llip-lopp once, if is said to be aming as a ore-shent timery. If a section is made to keep on ligp-locyping, it is called an ustublo acrilintom:

The remet arcurt uses one sectron of the 556 in timic out the reset sequence. If uses pins 8,9, 10, 11, 12 and 13. The resel circuir consects to both the 8502 and 780 processors. In fact, resce is the only processot control signal that is shared. The reser circuit also conneres to the two Clits and the SID chip.

When the reset button is pressed, controk of the system is siven to the 280 and the 8502 is placeed on standby. Incidentaily, that is the same condition Unal occurs when yous furn on the C128.

The 7exn then goes about irutializing and then turns control over to the R5O2 in cither C 128 no C6id mode, accurding to conditions. Once the 8502 is in operation te turns over comtrol to the Kernel mitaahzations rourine called START. START goes shout its business of resetting the system.

The cther cimes in the 556 is wired inio the - NMI circuil. If you hit the RESTORE kev on the

kerhonsd then you generate a sigunt ralled ksith It is applecd so pin 6 of the cimer. The tinser circust thes generates is nom-maskahic interrupt, -NMI, that is apolied to the 850? pin 4 called $=$ NMI. The

Whas sensen the segative edge of the simpal. The processor then reads the NMI vectur aut of memury. The vecior Ls simply an address in $\mathbb{R}() \mathrm{M}$ wibere the NMI preserats nevtine is located. The processon

Towe 8-19. Two cost ctips are in the C12s. Thates logic states stould be on the plom-

Test Point Charts		
PINS	42	U20
1	0	Fulse
2	P1asan	Putar
3	Rosel	Pulse
4	0	Pialse
5	Liow	Pulse
6	Phism	Pulsx:
7	100	L: m
8	Etuse	Putse
9	Pumer	Puse
10	"ulse	Puse
11	B'LEAE	Pute
12	Fulse	Putge
13	Low	Pulse
14	-49\%	mint
0.		

then reads the routine and exerutes ir. The routine disables the uther interrupts (IRQs), and saves the processor's repster coments onto a sectuon of RAM calked the steck: The prucessor thea continuc's through the N.MI sequence according so what is noeded for the RESTORE effect. There will be mure about the - NMI in Chapter 12.

OTHER CHIP-LHE COMPONENTS

Ot the 63 U compoments in the C 128 , the last fuur chapters discussed 61. There are two mare. 1128 and li59. U3R is lucated in the vider box to the leff of VIC. ISFSt is not a DIP. U59 is a trancistor device to the right of the MMU!.

〔i28 is in a 16 -pin DIP. It is numbered 8701 and controls the frequency of the master oscilatar of the C128. The master oncilator runs at a crystabcomenalled frequency of 14.31818 MHz . This frequency as needed to derive the various frequencies.

Fif. 828 Tho :imers resporixa to the logk: prooe with these stante
required bere in the United Seates area. The maseet oscilaneor in the C128 is also abie to run at an altemate frequency of 87.73417 Mllz . This frequency is needed to derive the frequencies required in the Eurupean area. The C128 is an mternatomal machisk.

In Chapher 17 the system clocks and ill their frequencier are diseussed to dectal. which includes 123.

U:54 in an inteprated circuit even though it is nor contained in the usual chip. It as used ats a power reanlator and is pars of the power supsly. If is the 12 volt regulator in the supply. It outputs a smaxth +12 volts ofe to the C'128. In Cbapter 24 the power supply in it entirety is covered-this includes the external ar adapter box and the parts of the aupplys muanted on the printboard, of which U55 is none of the important cumponersts.

9. The System Block Diagram

UIp to this point tan the bouk, the printboard layout. as illustrated by the Chip Location Guade. liss been the way to view the Cl28 hardware. Ali of the chiges on the board have been examined allad discussed. The discussiuas have been individhal for the most part. showing the typers of jubs that the vanones chipo are capable of perternung.

The knowledge of wirete the chaps are inated on the bourd. and the overview of what euch chip can do. will hefp you 10 analyze symproms of trcesble and come up with chip suspects. Once yun have narrowed it down to the seall of the trouble in this way. fou can cither try chip seplacement as a repar tecturique or using the T'eat Point Charts. and taking vom or tugic prube readings. If a readme is incorrect. then that is a cloc.

Should an incorrect reading be found af an output pis. chances are that the chip has an internal defect Wihen the wrong readung in at an irryut pirn, chauces are that the ctup is okaly and that the circuis feeding that pin is cutputting the trouble and neceds a cluser lonk. Of course, these assumptions are nor

1) wher, but they do give you a pood stare on ihe resair. These Chip Lacation Cizide techriques are very powerful. Used properly they will enable you to fix chip faikure in at least bioss of cases.

In the book fromi here on, all those clups tha: were discussed ats indivyduals on the prisulbord will nuw be joined toxether io form the C128. In order to be able to fix the remaming 40% of $C 128$ break. downs, ycua will heve to kremw the way that this commputer works. The best piece of rest equipment is your brain. In order to be able to puazle ous how the mastive failed, you urst have to know how it works.

Al this point il is tinge to examine the C128 hardware in detail. J'll start with the hikets duaxtam of the marthone in this chapter and thern exarnine the mutividual blucks af the diagram in subsequent chapters.

BLOCK DIAGRAM

Fruma a block diagram point of view, cosnputers poday are not much drterens from the onganal ones
used shortly after Wionld Warll. The :8, ,R00 vacuum tubes un the 1950 ENTAC trave been tanstormed in
 block diagram view is abuut the same. Figure 9-1 presenist the block diagram of the C 128 .

The two cential blerks in the diagram are basers around the two MP(1s: the RiO2 and the 280. Nowe the Eithe auxiliary latch attacthed to the 280). As menronerl. the latch and the buffer permit the 2sto to work with the data bus that is desugned for the H50.22.

The cores of the MPL is are the Allils one in each MPI. The Al.U. the arithmeetic lugic anit, raker the input information and periorms arithmetic and losoc manipulations upom the dala. The finished data in then output from the Al.U. The ALU is surrenusbed inside the MPU, by mamerous registers and pater. These are discussed in Chapters 12 and 13.

To the left of the MPUs are the ingut-only blecks. truside the blucks are the keyboasd and CliAI. The keyboard practically uses up all of the CIM capacity. When you strike a key, the impuise created by a keybuard nuw being shorted tos a kesboard cohurns is transferred to ClM1. CIAI m twrn transfers the generated pulse 10 a register in the 850' or to the latels that is workung with the $\% 800$. whechever MPIT is in sontrol at the time. If it ques to the latch theass the katch will mput the signal in the 2800. From either MPV the keystruke is prucessed. stoned in vikeu RAM and appears on the TV display.

Another large group of chips in the bieck diagerase consixit of the residersts of the memory map. The main job that the MPUs do is tu trantifer binary Lata bits so ard from the residents of the menory map. The MPlla can be the transmitter of the dita. or the receiver. When it is tranamitiang the dala, it is writizg to the map. During the nenearme, the MPU ts seading the data from the maly.

The chips that tive in map addresses are mast of the large chsps that we lave tuuched on so tar. The surialler support chips do not have addresses. athought they are in address and daza pathwnys. They just hesp ous and perfurm specific jobe to cxpedite the data transferting.
in the menory map area. the first obvious chaps are the 161164 dynanir. RAM chigs. The MPR works with them constantly. The MPI' cam erans-
mil or receive from these readimnte ctups. The MPC' is able to store bousekeeping inatrucsions for nperating the computer in some RAM Jucations, Is is able las store the keybourd inpent information in a section known as videco RAM. The MPU can place in RAM addresses of sprite characters. The MPU can store programs that you mas write and tbe chata that goves with the programs in Risk. The storage of hanary bit dota is the furte of RAM. The MPU can then retrieve any of the stored data by properts addressung the focations contziaing the desired bits.

The next group of memory map residents are. the ROM chips. These ancrude ROMs 1-4 and the rharacter ROM. The addressed ROMs can transtait datia to the MPll but they cannot receive data from the MPU, becarase its but tholders are ful of factory burnt-in data. When one of the ROMs has a location aukiressed properly, thern the MP[\} can read the inatiun's contents easdy.

The two CIAs are abso addressed by the MPL? They are not storage places like RAM. The cumtrol registers in the CLAs have addresses. The MPU sends these registers mstructions on how to operate, Once the registers are instalind with the proper conroul bita; then the CLAs become purts of entry and exir for the C128. The MPU' in then ahie to transmit data out to, and receive data in frum, perspheral devices. The data that does travel to and Erum the Clats has no storape facitities inside the C128. The data must pass turexugh the port to whesever it is cuming frutu or gomg to. The CliAs unly have a few addresses in comparisun to the thousands in RAM and ROM.

The Pla is consected to the MPU/ addrems bus. In unly receives Alj-A10 lines. It usey cumbinname of these hits to produce ite chip select outprits suth as those to the ROME and VIC. The SMMI is alsu cumue:ted to address hnes. If usey the address bits to generate ris assiyned chip) sclerta and the trans. lated addresa bus, TA15-TA8 used by the stultiplexing chups for RAM rocessing

VTC has 49 registers that have qo be ublressed with mutiplesed address line inputs. This is a new VIC bur the 49 registers are compatible with the culder VTC in the Clid. The repisters are used to conhigare all the mideu cutputs that the chip can produce.

Fig of the two MPUs are the center of activity

The Video Controlier almo has regasters thut can be andressed. These registers are contacted by the MPU to produce the 80 -colurnan sidied outputs.

Sill has its owa altacturnents to the MP(? address lines. SID nperates independently of the ress of the cossurter except for the MPU. It recerves iss nwm caputs and produces its own oulputs. Is just needs the MPU, the data bus and axdress lines A1-A(to operate its own registers.

The color RAM is in the memory map but has nybble loratanns rather than bere-sired locatiuns. The forur bits in a mybble cans unly hould 16 possable combinatrons of highs and lows. However, four bits per kocatonn is really all that is nanded in the color KAM. All the oolor RAM is assigned to do is change culurs in ils respective TV screen locatoms. One location mantmb the color of one of the 1000 locations in 440 -culuma display. The 16 sariatoons of bits in a bocation let the addressed bocation chauge the lin
block to one of 16 different colors. There will the mone about thiss in the VIC chapter.

The overall blork diagram showe that the MPL's are the originators of all addressing to the residents of the memory map. An MPU is aided in its addressing chores by the PLA and MMU. The MPII Rets its operating instructions from the KOMS. User the RAM tos store data bits. gets input from the keyhowed through a CIA, provides outputs to a CIA and thelps the VIC. Video Controller and SID provide outpur. Lef's examine the relationstrips thas the 3500 has with the resiulents of the memory map.

THE 8502 AND DYNAMIC RAM

The 8502 processor has four types of lines connented to its 40 pins. In Fig. 9-2. you can sec 16 address pins. eyght data lunes, seven control lines and UO port connections. Then there are the usual +5 volt input and ground.

The address lones are outgut only. They are the faruliar $135-\mathrm{A} 0$ and travel uver the bourd to a but of the chips. The data tines connect to the data hus. i17-U0) which alsu are found all uver the bexard. The controll tines are split between inpurs and outputs. The li() tiones are all output types. They commect to the first two locatonns in RAM and do a aperand jobs that un discuassed in Chapler 12.

The relannnship between the 85012 and the 128 K of RAM works in the forllowing way. The data bus fines are connected directls to the 16 chips. When a location in RAM is addressed, then eight of the 16 chips are activated. the locatom forand and data can move enther ineo the location of leave the axdress. The addressang is triciky, however.

The 16 ctipis are broiken down into two banks of eight chips each. The hanks are given the numbers of () and 1. The first thing that the 8508 must io is to specify which bank it wants in address. The
youke oniy has 16 sddress lincs which can only adIress 64 K of Rr.M at a time.

The dixie thesefure sends address bitn to the MMU. as in Fir. 9-3. The MMU is able to desive siknal bits from the $A 15-A 0$ inpat. The MMU then outputs. Frorn its pins 12 and 11. Swo sigualo called -CASO and -CAS1. These sigatals are thengated in iwo sections of 119, the 74F.32, and thea sert nato pins 15 of all the DRAMy. -CASO is connected to eight chips of Hark () and -CASI is apptied to evight chips in Bauk 1. If © CASO is kow and -CASI im high, then Bark 0 will be turned on. II $\cdot \mathrm{CA} 51$ is buw tiven Bank 1 will he activased.

Once the bank is chossen, then the locatiun on the chips can be activased. The addreas bas from the 9502 is then sent to the two multiplexer ctups. U14 and U15. a prair of 74LS257'\%. The connections to the chips are mot straighsforward, as indinated in Fig. 9-4. The 1f address lines are monnected tike.

the fothoming U14 receives tines $A 7, A$, A5 and A4: in addition 114 neceives from the MML', Irans lated address lixes, TA15, TA14. TA13 and T'A12: [115 receives the remaning hees and gets A3, A2. Al and AO. It also gets TA11. TA10, TAy and TAB.

These 16 address lines choorse one of the $6.4 K$ focations in the chosen bark. The inulaplexers oatput the ruw address and the columin address of the location. The cighe bitl neceded su adtiress the rows of DKAM matrixes are 15-R. The eight bits needed to address the colustuns are $7-0$. The mulriplexess with Uleir AN1) and (OK gate internol circuils are able to auromatically uutpul al une time the eight $15-8$ addresses bits. A strohe signal called \cdot RAS (k ow address strobe) is applied at the pions it an the bank of chipis (See the Master Schematic.) This strubes the $15-\mathrm{B}$ bats into the row deconder insude eluch IJRAM. The row are thus addressed.

Next, a second strube sigusal called •CAS is applied at the pane 15 of the chosen bark. This turns off -RAS and -EAS opens up the multiplexed address pins to reneive the columms audress bits. The biss ure then strobed into the colunn decoder and addrests the of the columns. The two siguals oRAS and -CAS oriquinate in VIC.

Once the desired number ruw and the desared number columes are addressed no all eight chipri, then the bits lorated at their mght intersectives are acsivated. The fucatiuns are then open for husionss and will either recerve a byte from the 8500^{2} or send a byte copy of their cumtenlas to the 8502 over ule data hus.

A direct data hus is between the DRAM banks and the rowe. If the 280 is the MPl' us conerd, then the data bus is not directly corsuected. A Lalth, U12. and a buffer. U13. are in the data lmes to interface the 7.80) with the stsix designeed data bus. The daia toces lines, $177-17(1)$ are wared one: 20 a chip in a barnk. The IVT tuc is wised to the 177 assgned chip thas containes all 64 K D7 hit locations. The Df line is wised to the D 6 assigned clup that consains als the Lut bit Jecatiuns, and so nat.

Each DRAM chip has iwn data lencs, one fot inputting a bis and ome for outpottings a birs. The rwon chip lioes are wined Ingether on the board, but act
sepurarely accorting in wherher a read or wmte is in progress. When a read is going no each I)RA.M gryes up is copy of the une hit in the addressed lacetinn. Durng a write cerch IIRiM receives are bit and stores a into the andressed bramon.

THE MPU AND ROM

$12 \mathrm{Sh}_{\mathrm{K}}$ of RAM is atrailate in the C.28. Wher you turn no your markine in C 128 mode the sign-on messaree lets you know that 122.365 of the 131.072 bytes in 128% is available. Where are the missing 8707 bytes? 6144 are assigned to the Ficmel and BASIC. 102 are pruvided for the 40 -miumn viden, 1024 are used by the M.3il, and the sop 256 byters in evers bank are used by the MMT: Lisstly, three bytes are needenf for IBASIC Io mark the startis and ends of proggrams.

Hinwever, althruggh there are 128 K in RuMf the 15 address lines from the MPl: ean only deal wnth a 04 k bund af a time. Addresses in deciunal mever examed the 64 K rampe. In order so utilase all of the avalable KAM. the MPL1 uxes ibe lvelp of the MMP! and banking rechniques.

The KiOMs are atsu addressed in the bitk mange. ass secm in Fik. 9.5. This means that the ROMs bave the same andresses as prates of RAM. At tirst whance it appears that a conlbet could exis? betweena bath of them using the same addresser. (hwumaty. this siluation cannot he tnierated or programs wiuld crash all over the map.

What happens is the following during ROM addreasing. The ROMs. U3e. 33. 34, 35 and 36, it a L'36 is plukged in, are alit dreetty wred to the METU. The iuddress limes and the dria lines all pon straight in the ROMs wnthout any other chups inbetween. When a ROM is addressed by the MPl: the 16 bite go directly. The snly other addressing thal is per. formed un the ROMs are chip selents from the P1..A. to pirk the one ROM out of the posssible bve to turs in.

KOMs catoner be wririen to. They can onls he read. When the MP\{1 addresses a ROM with a ILA gencrated ctrip secect and the addrens bus hatp, and asiks for a read, then the C"AS is disabled in buth Isank () and Bank 1. This surns off anl 128 K of K.AM.

 of its contents so the MPU.

Sheruld the MPU write to a ROMM Jocation, the
 nores the dara bits that amive ar its data bus lines. The RaM is can. lite dora ials trien the MPPI sime the RAM is avaliatle. geets sinerd en the indilressen! iecateon Pregramuners : ass find thes athatian tavely under some circumstances. Anywray, the R()Ms are

 andress.

In C128 mode, 48K of RCOM in avalable. In CGA trivede, the same amount of ROM is used ass in the C64 machune. The MML' registers handle nall the FoM mheressang. manombition Thes is whered is. Cluppler 15. There are masy different layouls in which the ROMs can be placed.

The charscter KUM is in the memony map and can be accersed by the MPL. However, its main job is to be socessed by VIC and the 80 -columin Video Cuatroder chep. If contsing the cuanjpatc character sets for both the C128 and C64 modes.
 screm. When the MPII reada the character ROM an BASIC it recemes binary bits that get displayed ats decinnil sumbers.

The charaster ROM ss ant umily siblerresion ly the shared indtress bua, SA7-SA1), ond the trunslated
 in more detail in Chapter 18. Otece stre FROM is ad-
 po the data fun. These bits can be received by the MPU if it is the addresser. Should the VTC or Videu Controbler be the addresser, then thes will reccive the bits, convert the bits to viden stinala, and vatput thena to the TV display:

MPU AND CIA interface

Each CIA only has 16 internal registers that cun !x-3dotressed. Wruy Jour midress heves ate 5equred from the MPII, A3-AO. Figure 9-5 shows buw the oduress lines commect to the CUAs. CIA means ComBles Imecriore Addepher and the device is a compli. rated manisiule machime. Chapter 19 eres unto its

Selals. The CTA opernte"s direcoly with the MP1 ne Its atcernal sede. (Th the externai pate it cherates. with penipherals.

The MPU secs the CLA as simply sime more
 are the pores of enery and exit givng the MP! ins. stant comsumaration with periplerals.

The CLAs have the usund $D 7-120$ data liees thas connect to the data bus. The CLA cau be read from or wntten to by the MMUU, just as RAM cam. The
 \&iA has 16 other daer lines that connect ro the penpherals. These lines are two seef of eixht cach
 nated with the bettering PAT-PAU and PB7-PBU. Twu sets of regtsters, almust identical, are in the
 PF lines frum the other revoter. Tike 19: [h! bus lines ronmert in buth set. finh irgsutes so: has :wo addresses on the noemory map. Mre data bus will service whicherer set the MPII addresses.
(CIA1, BIT, is used IO $I / 0$) the keyboward and the coutrol ports. CLA2 acresses the serial port, the

 tufferent reartings.

Insicke a ClA , the two ports, A and B. use six registers te thithelr wh. Finth regsier is hy?
 performing uther jobs. These other duties have 10

 ahs have bet awn adrresses glving :he :rgaste:' - total of 16 address tnes. The four bus lines. A3-A/n can generate 16 different sets of address bies.

The 16 adturesses are opened up individually therugh fore adtress pinc, RE:i-KSi The RS stand for register select R(3-RSA) are connected bo A3-A0.

The ClAs have ome pin called ${ }^{\circ} \mathrm{CS}$ to select the thip. The selection bits are coming from 413 , the T11. 1338 1-ar- 8 decoder chip, as mentionod earther. The Cliss also recelve al signal called $\mathbb{R} / \cdot \mathrm{W}^{2}$
 9-7. The line tells them to send data to the MPV

ADDRESSING THE CIA'B

The Cllte afe pritalized by a gigral calletil
 are combecter at pin 14, TOD, the the sectric omm-

 is in Chupter 19.

THE MPLI MND WIC

 CGA ondy had 47 registarat This bewer 48 -pin Wif

 This grew the Eles keytown onditional kers in the
 C64 mexde.

 curamed in mure datail in Chapter 20.

 ing ite opectation. W丁口 hata to be athe fo aceene parta of RAM where viden data jestoned-find that stantw we the chatarler ROM gid the rodn RhM

Wic'spirs are an assortment of mpuls oultows
 irgata indude the chip weder, "fen, the polor clock

Fig she vic to a connatex chy : trat can sake ower the compute ame act like an Mmu

Is + RAS, CCAS, Synchaminanoe. Chrusta, the I MHz and 2 MHz cluct signats, the 730 Phasel clock. the cohor Phasel clock and AEC the address enable control. Among other lines are the usuad [)7-\{0) bus cornectiums and addrese hes teaving VIC to acomes a chosen $16 k$ portion of memory.

In Chapter 20 the details are cusered. but for now. it sfruted be noted that some of the VIC's adddress thees ane two way wlreets. The processor usees them 80 acovess VIC registers and VIC uses them to aceens video R4M, character $\mathbb{R O M}$ and nolor

RAM. When the primessare is accessing VIC the fines to VIC arc inpusts. When VIC is in control the lines bemme ouspurs.

Ort of pin 12 VKC sends out the AEC (address enable controll signal. AEC is an imporant controf. When AEC is a high the MPU is in charge of the circuits. When AEC gues bow, the MPII address tines are dasabted and VIC Lakea contml.

When VIC is in sharge it reads the video RAM sertion 60 unnes a secound. The widen K.4M is the sturage area where the coodes for the characters that
are displayed un the ecreen sae kepr. V1C keeps scarning video RAM and with the help of the characecer ROM continually updates the characzers bemg clisplayed.

The inpuls to VIC are all dopotal signals. The cutpuls just mentioned are alsn digstal signalls. Bexides these inputs and oulpuls. the VIC also ountputs three anadog stgmats. Inside VIC the dopital inputs are cmoverted to analog. These analus siunuls are consbined tu forms ecolor TV videa. Thes viden nutgut is quite like the oncs yuns receive feom a sommercial TV stałuve.

Pin 17 outputs the sytur and tuminance party of tire VIC formed simal. They are ferl into the KF Modulator box. Piss 16 oulpuls the color signal. It also goes intu the RFF Modulator box.

RF Modulator

Leside the box the signals encounter a culor mix. ang and amptifing circuil, shown in Fisp. 9-9. The haminanoe ssprus is injected into the bose of a 25° (458 ups transistur. The cotor is passed through a ccril and capacitar and is injected intu a secund 25C458 transistor. Thee sipnals are processed in the transintors and are then passed out of the box. from box: pins 6 and 7. to the composite sideo outgart pont to pins 1 and 6 of the port. ats in Fig. 9-10.

Besides thetr indridual exits the larmanoce and cobor signils are mixed together in on sman RC circwis. Their resulsant, a composatc cotur TV mignad. is thea passed out of the box to pin 4 of the compresire viden output port. Note that this compusate colur TV sigmal is separate and is used independently of the Juminance and collur outputa.

In addition on these two scparnte TY dopplay sig. nals exitmg the box, a third TV display sigat is generaled, A 2sic460 transartor is th the box. It is in an osfallator cincuit that is nesunisg at a TV freqsency. A channel select switch cann set the oscilas tor to rua al eizher Channel 3 or Chansmel \$. The switch is set on'3 is Fig. 9-4.

The 2SC460 circusir is sastputtung a Channel 3 carrier waye. The carrier emerges frum the I win IN 1148 dindes iund consecter to a tane. The line conttains the compusite culor TV signal. Incidentaly, the
line also contams the audio signal that $5[7$ is semat. mg out through the audio crreuit from 2SCA60 mpn transistor.

The Channel 3 signal then nixes with the compxosite cukor TV signal geterated by VIC and the andore sigmal protuced by 5[It. These spmals are cleaned up through an RCL network as the end uf the line and ovstput through the RF outpuat port. This sigunal can he connected in any comnsercial TV, and vewed and beard on Cbannel J.

VIC is a fot of things. but mainly it is the (\$0) chup for the color video. The circuistry isput to VIC in tested and probed with the vom and logac prober. The clipital cutpul from VTC that soces back into the dimptad cincuits alsen can be exarnonsed with the worn and lugis: probe. There are no real reasuns, during normal serwang, in the digntal circuits, to use a sooper. You are only de:atong with highs, hows and digital pulses.
(Hace the analog onlor TY signals leave VIC, the servicing lectumpues are changed. The anabore sis. tuits are forms of TV impuises. They ran be cherked accurately with an ordinary TV scope. The waveforms the scrope should dsyphay are found in Chaples 20.

THE MPU AND SID

The 6581 Sound Intertace Inerice is the musir symthesizer and sound effects system to go with the: arcade styfe graphess the Clizs is capable of producing. SID is a 28 -pin DIP. The rumbers 6531 is compatible with the $85 x)$ smec the 8500^{2} is simply in ingroved 6502 .

There are 24 addressahle regsters in Sill). Five. wideress liness are able to censtact 32 locations, SII has fire address lines M4-AO. as in Fig. 9-11. The additess lanes can set up a rean or wote from the MPU to thesce locations. Shoukd a reid or write be ined is one of the three remamang addresses an sill) that dn not exist, a read returns garbsage and a wrike * simply igmored. The SID, from the MHIT's whew ouint, is corasiderod in have 29 le gihie memory addresses.

In Fig. 9-11, there are the usuad esght data pans. 1) $7-110$ at $22-15$. The MPII supplies data to STI) dur-

RF MODULATOA

 real The R: © \& lene trem tle SPL deatides the

and read-wate twies The detail are convered in (hather ? ?
 from the eontril pirts :he permpherals test are

it is routed to the Sill) pins. The sugnals set the position of potentiorneters of the chip. The Audics In and the CAPs min and filter the audio. This is cowered in the SDD chapter.

SID. after afl the waveform generaung and modulating has one audio curtput at pin 27. The coutput can have a peak-to-pcak maxarmam of two volts. There is a de level of six volls und this can be coupled to amy avdin amplifier. On the printbnard. Q2 is an mudin ampinfier sransistor that receiver the SI[1 atedio ourput and sends is on. Q2 is formen to the lect and up sear the top of the SID IJIP, on the printhoard.

Cit sends the auth curtput signal to both pan 3 of the composite video port plug and to pin 8 of the RF Mcxlulator boss. sthum in Fig. 9-10. The sudin can thea be taken from the port phag and is alsu modulated into the TV Chroznel 3 or 4 frequency as sound to go with the vadeo.

SID is a complex chip that enatams both M()s and TTL components. The Master Schematic shuws $V_{\text {(x) }}$, pin 28. The chip gets +18 veits to prower the MOS parts. At pin 25. Vics the chpp recenves +5 volte to energize the hipolar transisturs. SII has a
-RESET line and a clock mpart to kcep it in tume with the arcing of the MPLI.

THE MPU AND THE VIDEO CONTROLLER

The MPU secs only twe regaters on the RE63. starting at decimal 54784. When that address is contacted, it is through U3, the THLS1:T8 1-af-8 decoder. The decoder envits a sipenal cilleed - (S85663. This turns on the chip at pin?, ©CS. On pin 8, •RS. Whdress line $\Lambda 0$ enters and selectes one of $i w o$ registers with either a lugh or a luw.

Actually there are 37 registers in the 8563 but they must be contacted indirectly through the originoll two. an addreas regrster and a data register. The details of the register addressing is desmbed in Chapter 21.

Besudes berng ahle to be mocessed by the MIL: the 8563 can do accessing un its owa fike the VIC: can. The dexat can do thims as the VIC douts. Jo does not duplicate VIC. since VIC is used for all the 40-culuam display and the 856'3 perlorms all the 8(1)-column video output chores.

VIC user a section of RAM in stormg its difplay codes that are appearing on the TV scteen. As

 is on the TH suren.

 the $85 ; 3$ wrorks mith. Whte the three difforent gets

 D7-DU

 bor fis permand halle

 displays. Tbe RGBI outpull produces the clearest

 driver or buffer, amplifea the varions siphals and
 rownes the Aryst in preater cletail.

10. Servicing the Logic Gates

I
 you shenlid fawe on nodetulanding of what in en

 ally the troltager do not hare to be exach. They ran

 9. The cumpater then wafks by gelletalfor and

中rarkis atue again.

 with Bhall

 ply dirx

 Lhe telabinghip betuicun binary kits, decithil code

The rest of this chather is a bricfurf serininn m

Brnary' bote and how they ase handied and caded in sates. The next chapter is about binkry bits and how they ace prosessed and stuned in registers. Between the fwo chapters. you will take a quiant step towards
 deepest circuts of the C12s.

DECIMAL ANO BINARY

nectural numbers are used in the Commodore 32R BASTC to list addresses. In the 8502 , there is a 16-bit register called the program counter. It dues moost of the ssoke's addressing chores. You have seen where a row of 16 hights and lows can form 64 K combinations. Fiach combination of highs and lows in the promern crunter can form one of the 6 . K° adifresses un the machine's menory map. The program counter bits are connected to A15-A0 of the arderess bus.

The firat combination of bits in the frogram Counter 25 LLLL LLLL Lddd. LLLL. The: row of dnws in tio. 10 - I is called address namuber 0 in decimall. (There are no spaces in the actual register. I grat then thene for rasier reading of the 16 bies.) The program counker artomatioally places these bits unto the address bus. As soum as these bits lesve the MPU, the program counter is inveremented by ooc sutomagraty. The PC is breit to do this.

The nexis address is Id.I.f. LLLL LLLL LLI.H. This gruxp of bits with address Jocation 1 in decrmal. The next address is LLLL LLLLL IUd.d. Ll.HL. This is addicess mumber 2. The prugram counter conurues its incrementing. If it as not stopped. It will mixullessly keep onsnting up to 1111 HH HHHH HHHH HHHH. This is location 65,535. It is the: B6. ribich physicad fuctation, since the finst focation has an addless of 0.

Let's add up the IIs and Ls and nee bow they relate to the decimal numbers: or in other words. howe can they be coded back and forth. If really is casy to crack the cocle. It] do it with 16 buts, and then you can handle any size reghater. Other remisters you omight want to code cilther way could be the 6 -bit $R() M$ locatuons ur the 1 -bit Color R,AM

The bits in the address bus are names A 15
 nuficant BiL, A(1) in called the LSH for the Least Sip. nifixant Bit. The brts in between are either tagher or lower according to what bits they are referenced frum. The l.Sik so when related to decirnal has a value of 0 or 1 accorstang to whether it is sturing a low or a hugh. This, of cuurse, seems alwivous. Not quite as obviuus is the next lugher bit A1. It has it decimal value of citber 0 or 2 . A low es 0 and a high is 8 . The nexs higher bit $A 2$ has a value of U or 4 . The valuess comtinue to double en a hagh till hit Als hus an value of 0 or 39,768 .

It urder to convest a rexister to ita decirnad rode, all yrou have lo do 站 add up the valuce of an the hiss. Ansy bit fulder containing al low is counted ass a 0 . All bot holders storing a hugh is counted by its samnificant value. The plane valuer are gron in Table IU-1.

With the aid of Table 10-1, you cam convert lughs and lows to addresses and vice versa. For instance, supprose you are probing the address bus and you fund a fixed ret of bits on the bus. The bus is stuck on that mumber and will not sespund 80 any attempt to change it. You want to lonow wiat address the bus is pointing ton. The bits are H1.l.H

Teble 10-1. Binery to Dectmed Comveralon.

Signticance		Low	Hugh
Lse	$A{ }^{\text {a }}$	0	1
	A:	0	2
	A^{\prime}	\%	4
	43	6	8
	Ad	0	16
	0	0	$3{ }^{3}$
	26	\bigcirc	63
	4.	8	
	48 48	6	25
	4910	$\stackrel{3}{6}$	$5 \cdot 2$
	A:	0	(0xTH
	A:	0	4.396
	A. ${ }^{\text {a }}$	\square	8190
	A.4	0	16.548
MS8	A. 5	"	32768

Eitnary to [ecimal

WLS	$1 T$	
	1.	0
	1	0
	H	4196
	H	20\%
	H1	1024
	EF	512
	H	256
	I	11
	I	0
	1.	11
	E	0
	1	4
	H	4
	1	11
LSE:	I	0
Acdrese.		465:17

 beg the stuck lans.

'7h convert the decimad, pitu lont tor: 8 combu-

Dhecimal to Bimaty

45E	32568	11
	16.104	'H
	[1)	L
	4090	H

heXADECIMAL

Most of the time during eroubleshooting and repair work on the C 128 , decinal and bonary coding will suffice. "The BASIC ROM comes on using derimal. The lopic probe and rom reveal binary haghs and lows on the warious test points. If you can intelligently relate the two nepresentations of voltages, you can do practically all the jobs where sumbering curses intu play.

There are some occassons though. where it sould the handy to wse hexaderimal too. Hex is gress it third way to express the decimal or hinary values. It is used extensively in mathine language programming. Its use during repair jobs is to oode binary in another way.

Hexudecimal meatus six plus ten. That is, it is a numbering yystem where you count cen mumbers from () to 9 and then crount on up to 15 whth A, B, C. ㄹ. E and F. Neer F onmes 10. Hex lends itself to compusers because a nybble of banary numbers counts frem U (LLLL) to $15(\mathrm{HHHH})$. The hex numbers line up with bioary exactly. Table 10.2 shows the binary equavalests lir hex numbers 11 throukin F.
llex is a comvenient way for programmers to use hanary. Table $10-2$ shows that one lex cumber can represent four borary vollage states. That is why I pur a space between every four vollage lavels.

Tuble 10-2. Braery Equivalents of Hex Numbers.

Hex	Binary
$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & A \\ & B \\ & C \\ & 11 \\ & E \\ & F \end{aligned}$	11:1 LL: H LL+4 $\mathrm{Ll} \mathrm{H}+\mathrm{H}$ L+L.L LHL LHHL LHHH HLLL HII.H HLHL H\|LIA1 HH:I HH:H HMFIF

Each space is beiween one hex number. The four vultage levels are unc hex number. it is much easjer for a prugsammer lu code one hex number than four soltage slates. frum 1 s and us. four thies and falses, four sets and resels, or whatever way some engmeer or programmer decider to call the logic siates.

To convert any binary mumber wher. put a spare between every group of faur bits. Then find the hex equivalent for each grnup. The total bit size of the bunary mumber is not important. As tius. $10-2$ shuws, there are four bit holders in each location in the Colur RAM. You can exprens the hirs beld in each lucation with one hex number. There are cight birs in each ROM locaton. Thesse locabon contents can be wnten in swo hex nambers. The addresses in the Cl 28 are 16 binary bits cack. All the adilresses in the C128 san be descrised with four hex numbers. Refer to Fig. 10-2.

PEEK ANO POKE

Theres are two proutines in the BASIC ROM that you'll find are very useful durivy repairs. The rou. tines can be used normently when the C128 has tronWhe bout it in aikmang on with the REAl)Y and the honkand cursar. If the trouble is preventing the sugn on messaige from being displayed, then the follow. ing service meastures can'l be used.

Assuming the C128 does syign on and there is trouble. you can signol trace the resiletats of the memory ruas with the BASIC comymands PFEKK and POKF. PFFKK bets you read the contenta of a location. P(IKE gives you the power so stich a byte into anty bxatuon that normally socepts bytes. These two capahilites atre exceedent truebleshumisy methers.

PEEK is a fusction. It is not a command. It beeds of cumrtand to work. The usual command is PRNT. That way you can sec on the screen what was th the location you peeked mpo.

To get a tast loni at location 1024. you type PRINT PEEK (1024) and bis the Return key. Whatever haits are in 1028 will appear on the TV screen. llowever, the bits will be coded in decimal.

Lecations 1024 is the firss place on the TV screens at the upper left hand comer. If the chararter P is being displayed. the code I6 will respund to the
locar

P-ぃロgrar:

riswilar

 !he 16-bll Pa.

 tellls the VIC to displas is F ".

 the fone bit hoders of the localing. The Pflife is curnplete,

Location ghatig fuat happeris to he the place where the booder collor arburd the TY surema is

 goce yelluw, thesi all the cunnpuenta that carrivel
 are orkuy. the the berder dides mod ere yelow, this is
 of in trupible.

 yout try to PRENT PPEEK bi limue a FOKE into
 POKE tiricighuth the vest of tie trook.

GATES

 tail in the next clabater. The trupes states that trawe]

Lated by the gates. Most of the manmalation cons sists of cither manatainug the voluge in a bit ur thimprag the state of the veltagc. The states finsh arnund the otreuats in romes thant are rueasured in rwhosecouds (billimaths of a serond) and are changed from + five solts to (0) velles and back. Reier to Fig. 303.

The regaters are sinrage areas for the bits. Yues can glace a light or al buw intu a segaser bir and the figunter will hois the bie for as long as the correct? puwer is apptied. The regristers are lound in vanous sazes. There are myhbie maistere ilhat how four bits. firle stize rogisisers boolding cughe bits and moud frgisilers that are. 16 bets zems. The regisiers lojld the bils threugh three general methods. In ROM strups, the hits are hume in permaskestly. The batclecs and static RilM chips use flip-tlops. Inyamic RAM giores voltage states in the capacitarue formed in the insubaed gate and grvund of the MOS chrp's insulated gates in the f'E"Is.

With carefus lexai stute changisus in the nates and the retable storage of the registers. inmpurang takes place. When troulhe atrikes, it is uftern due to taistare in a gate or regnster. The efectronic circuits on a chip can and do thost, supern, of sproug a leak ander vellage of tertperature pressure. Figuse 10-4 shows sume of the breakdowns thas can befion a ctive.

To eroubleshnot these types of talures, it in essentanit that you understand what is hwperning so the voltage states as they make thyir wny through the gates and the sevasturs. Thar way your vom and hugo. probe ressing with make wense and puisst yons to a trouble: quck

There are a lut of calles in the Cummudure 128. Most prominent are the 18 pin 1 JP's the 7406 and Phe T4l.sin. The 74us has six iswerters and the 74 LSobi zontanns four ANI\} garea.

Nut as well seen are the gates in the $741 . .2257$. Fach of these 16 -sin गIPS lave three inverters. eught AND gater and four (OK mates. Whife the fillang has its mates arparated with a pin assigned bo every input and ourpxa, the muthplex chups have the gates anternally wired qusether. The ANTI coutputs are wred to the OR imputs. Yuu cen't put a probe on the ANJ -()K nomectans.

The 74L.S238 decuker isks montains intemal gater. The Lharacter ROM has am ANTI gate om its chip sefect circuit. All of the large thips have various gates. The genphersl devices cuntain gates. Any and all of the dxical circuils have dependence on gatem. Gates, like any other elentronic circuit. [ail occasionally. Yies sumst know how ta handle gates if you want to be able to repair four Commodore 12.8.

The gates ef concern for the C1? 1 are the YES. the NOT. ANL, (IK and NANI).

YES Gate

As the name mplies. a gate is a barricr in a pathway that tam open to let signal pass or wlose and block passige. The YiFS pale pertermus that task cxactly. It has ruw cunnections, one input and one coutput. II a hagh or low arrsves at the input and is permitted in pass., the same type of sigual will leave us the outpus. Thus is. if a hugh arnves, \& high will lenve. Shoukl is low arrive, then a kow will leave. See Fig. 10-5. There is no change made to the logic state. You maght aske, if there im no charuge in stale. why bother?

The YHi gaie is an smpshifier stage. It in needed to amplíly iturrent levels and so match impenannes from one cincuir to another. It gets its YES name because the fignod doen oot make any logic state churges as is passea from noe sadee to another. TES Nates are fermed in the large ctaps of the C128. They are the butfers that are mentioned on occasiva.

Inside a YES mate is a tansistorned amphier. When the chip is using hipolar components the amb phlies' coukd be hased around an npm. The circuit is simple, as Fig. $\mathbf{1 0 - 5}$ shows. The npm is powerend normaily through the +5 volt supply. The high or low is ingut at the emitter. The natput is at the collec. tor. Whers a asgnal is input at in supn emitter, there is no phase reversal. The seqnal is amplifined and the same kagic state that was input is cutpeut. The ooly rhanges are the power oultput is increased and the isuperdatice of the output in designed to match the next ryrum

The attual internal wring of a YBS gate is mare extensove than thas example circuin, but that is the

 stere. (B) inroendate. (C) high steery utate (D) low stesch slata

 sulbut a tow oven trough fwo singhs ave input iD].
way the gates work. (in a normal schemmeric. sance the internal wining is not accessible. the enture YFis gate is drawn as a triangle. The input lead is unt a flat side and the crutpul is at the pointed end opposite to the input.

AB gates hove a truth table. Truth tablea gor Uneiz same from the engucers diat were usaing true arsd false to describe the lagh and the low states If they had been using ruigh and krw, the tables maght have beven called the high tathe. "Technicians thinh of high $\langle\mathrm{H}$) and fow (L.) whem they see a tusth table. The eruth tabie might contam any of the lugical stale descrnptions shuwn in Fig. 10-7.

The table is a hardy test mecdiura. The columns are tmbeled Inprat and Output. It the mpur is an H in a YEst tnuth tahle. the output is an II. When the irpul is an L. the enstput in an L. Therefore, if you are testung a normal YES qute with the vem no loper probre, your test reading on the inputt shouth also be found un the surput. The truth table in actually a voltage-state test table.

The turec-state contrul opprosi of choses the YES gate. The three-state coustrots ure used extcrsively in the Commodore 128. They are used to control YFS gate butfers and uther colig tarcuits. Figure $10-8$ reviews the three kugin states, hagh, low. and no

Lagicad 1	Logicas 0
True	False
High	Low
H	1
. 5 V	$0 \times$
Set	Cloar
Set	Reser
Yes	No
Ω	LT

「ig. 10-7. Here are nine veriabons on the descripsions of the two logic stinten. The loge states. regarciase of the ramm, are still only wotrages.
state. The state of nos state is vitad to the operation of the compater.

For example, the address lines cunnect to every location on the memory map. The address that leaves the Program Counter and arrives on the 16 buss liaes must open up only onc address. If nwre than one of the aklresscs are sead or written to, the computing will crash.

To avoid this, all the focations in the computer tan be equapped with their own YES gate that also has a three-stote contrul. Whate the computer is not addressang a leationn, ats the three-siate controls are off and the memory map carmot be accessed. As soon is in address goes cut over A15-A0 the one. kocatonn that is addressed latas the three-state control in its YES gate go on. That way only the one Incabon is contacted and atl the reat of them stay in an inaccessiule third state. There are a lot of threc-state devices in the C128. The 8502, the

RAM, the R()M, the pates in the ackiress and data buas lines. and others have thre-state capahitities.

NOT Gate

The NOT gate in Fig. $10-9$ luckes a lot like the Yisis gate on a schematic drawing. It has the same triangle shape and the sume imput and suatpurt leads. The only differemee is a tiny circle between the prointed end and the uutpur bead. Thia iss called the NOT cincle. The NOT civcle is what makes the device a NOT gate. Whatever shate enters the gate. the opposite state leaves the gate. If a high is inpout, a low is oralpus. Sheulded a how gu imlo the grate, the bow is changed into a high and the high comes cost. The truth sable for the NOT gate is shown in the ailustratam.

Fixure 10-10 shows the bpolar circuit in a NOT gate. It is sorocthing lake the YES gate. An npon transistor could act out the part of the gate. The VCC La still $-\$$ valts. The obvicus difference between the two circuits is in the inpus. The NOT gate inpur is connerted ton the base of the upo. The YES gate had the imput tied to the emitter. There was no revers.
sal of logic with the emuiter inpue. When the bogit state enters the hase, the state is reversed. The chip io almo called an inverter.

The NOT gate or NOT circle is nne of the mass used abbilties in a computer. The inversion of the logeical state is the opposite or the complement. NOT gates alwoys nusput the compleroent of the imput. Thuring lesting. the fact that the output kogic level is always the opposize of its ingut provides a yuria sheck to rest an inverter.

The 7406 N chip in the C128 han six inverters. They ane ald used in outpur lines that seed the state of the lime complemented. This chip was discuseed in Chapter 8. There are anamy other NOT gates and circles in a bot of the ather chips in the 128. They are viral to the operation of the computer.

The NOT function is found in all sorts of placess
 durnsis troublestacting. there are many terninals de-scribed with a straight line drawn actoss the top of the name. This overscore means NOT. This is the NOT tine. It designates an inverted rasntity. The asterisk I've been using is a subutitute for the line.

Fly 10 -10 「my

I use the asterstr berase it is simplet thase tr writ뇨․ .

 isk is alko rectux

 bled, thee sermifill is. itjected with a lowr and the

 rovetie-

 the narme in yodry mud. For insiance, the Teadizw ite

He promocred as "Rex日-NOT-Mnte." Actudy the

 gland

 chech orat the tegit points lia all the chups. and cone ne:Ttons

ARD Gate

The AND sitmatic symino io shuwn in tig-
 Th contrest to the tatal of two derds on the Yes oud

When the ANL gate is aldm equippod with a Notr circle betwera the blum rounthid ard and the

4
 gutes. The wor suly is shatened to thw

 there are a wit of mascocupie componurs There
coukd be all sorks of transistors, resisters. dioder. and su un. In fact, any gate can be formed by configuring a lot of other type gates on a chip and wiring them fo lailor a particuler gate. The liftle font bulles on its side could be designating dozens of separate components.

From the servicing point of view, ad you need to do is sthink of the gate in the simplest terms so that the resting and reuair proceeds as rapady as pusssible, Tlat way you can trace a signal and pinpoint the sounce of a trouble. Except for your natural curiosity, it really does not matter which minute senson of a misascule interral tatissstur has guven up the ghoxst. The important thing is to realize the lotal pate is dead and needs replacement. Yous can lest the inputs and. from your understanding of the logic, be able to predict what the output shoultel be. If the correct output atate in present then the gate is okay. If the output logic is inoorrect. then the gate becornes a suspert.

The classical description of an λ ND gate in elecLrical lermss is a circuit consisting of an output losd such as a lipht buth with two switches in senes. The
only way that the bulle in Fig. 10-13 will fight is if both switches are closed. If one or both switches are open. the crcuit is open and the lansp won's glow. There are four pussible possitions the two switches can assume. Assume that the energy is supplicd by a 5 volt battery. The builb has a high of + 5 volts applied when both switches ane chosed and a low of 0 velta when a switch or buth switches are open. We cm call an open switch L and a closed switch H. The possible inputs are the following:

Inputs	Results
L-l	No bight
L-H	No light
H-lo	No Gight
H-H	Light

The same type of eveans take place when there are threx ANL) mputs instead of two. The inf differ. ence is, three inputs create eight possible combinations that can be applied to the gate. Out of the eight inputs only one irput group will tight the bulb. That

Is when all theer swethes ate onsed. The mpats ind resules look like the following:

Inputs	Ressules
L.L-L	Nul lyyar
I.-L-H	No light
L-11-L	No listal
$\mathrm{L}-\mathrm{H}-\mathrm{H}$	No light
H.L.L	Nor ligdı
H-L-H	No light
H.H.L	Nul light
$\mathrm{H}-\mathrm{H}-\mathrm{H}$	Iaght

When the ANI) gate has touer mputs, there ate 16 combintionss. Five anpuls makes 32 combenimpon of possible lopor: states, and so on. No mutter how many umputs there are Uleusth, the onsly way the ANI? gate will putput a high is if all mputs are Hs. Whers Fou are takng the state of the AND outpur. a lash means all inputs are high. If oue of the ixputs are
 tom of taibure. Tlue gave could have shoted or opessed im a way that is rausing the unexpected high reading.

The actual ANI) circust mould be based around a pars of payp transiators wired in perrailel. Refer to Fis. 10-14. The emutters nt hoth the anp's curumet to +5 volts threugh a resistur. Thee AND) output is [rom the estulters. The two AN1) mpuss are cater. ing through the twu bases.

Whess cither or both mputa recemse a low, one of the transestors or both wnil condue? and the uus pur will be low. The ordy way a lugh can emesge from the output is if both inguis ars high. W7een that happensa aeither pap cian cunduc: and the notput ematters rase in the sarpply of +5 volts.

Yion coubld thirk of an AND gate as an eiectroner cenobiouticn leck af sures. A luw a output whal the" lonk is sause aght. The only way the lock will upers is whear the correct combiration is input. The cerrect combanation is the inpot of anl Hs.

OR Gate

Figure 10.15 shows that the 741.5257 itups use OR gontes as part of the internal wining. The OR gate ousputs are cormected su pins but the inputs are atlached io the ourtgats of the AND gates that they are donisg the muthiplexing with. The inputs from the address bue are the inputs to the ANI) gaten. Thus chip was niso discussed in Chapter 8.

The ($1 R$ ginte is drawn schematacally fike an artillery shell ina its side, instead of a fat bubet like the. AND) gate. The ctassical eloctrical representation of the OR gate is also shown as switches that operate a lught bulls. The wiring in Fig. 10-16 is different than the ANI) cirruit. Whereas the ANil) circuit had swituhes in senes. the OR circuit has the same
switrhen in graralle. The ANl) circuit also needed all the switches closed to Eight the bulb, but the OR cment ondy needs a simgle swntch closare to illuminate the bulb. The poossible inputs are the folloswing:

Inputy	Results
I-h.	No Eght
L-H	Light
H-I.	Eight
H.H	Light

The OR gate atso can have more than two languts. There can be three, four, or more. Like the AND) gate, (wo irgputs prudurce four input possibili.

 9a8e's output is high undmss both inpuls are low.

 are closed

Tif 10-17. The OR gate cmen buil with doce inpuis in perallet
sees, shree inputs can have eight combianssons of H s and Ls, and four iuputs make 16 possible ways thas the inputs can be arranged. However, monatter how trany impuls, the OR gate will outpul a luw only when all inputs are low. Otherwise the (KR gate will nutpot a high. If just one input cant of many is high and all the rest are kow, the OR gate will put out in high.

An OR gate can be built with a sumber of di. odes and a rexistor as shown in Fig. 10-17. If you want a two inpurt gate, two dindes are used. for a
three inpat gate, three dindes are needed. One di. ode is reended for each mpul.

The diodes are wised un paralle!. The modes of the dimoles are the input pins and the catlodes are tied logether. A resistor frum -5 with is oxamested so the cathode junction. The junction is also the $O R$ output pin.

While she inpurs are all near 0 volts, the divudes do not conduct and the output is held at -5 volts which is a luw. If a high should appear at one of the

ExClusiveOR Gate

 brevisted to KOF，chipa．The Mold furction thongh B wery iroportant to the machine．One of the instrie－ Eions that the frimp will respond ly in EOH ，which

 EOR，it wil exchsire－lum oll the biks in the acolmu． Lator reserater with any mentry location yrpar provide． There wath be more atoull this in the aexal chapter on regiqters．Meanwhip，we．Wit review the khth
韩部
 mose cxacly like the OR symbul．Thee valy diller－

 reacis that at the mpuitend，the leads are attached to a curne ath there is a space bettren the curve And the rest of the symben．If Yrou thonk of the sym－
 itput beads ag tup ramrod used to path the shen mitr

Lert＇s collopare the OR and Xone inputs and wut－ puls to gect the difference the exthusnences makes， IT you are sigial trang a two－mput the sian XOR pate there are four ilipul wombinationa possibie for both grtwe．They are the exame inputs whether the gate is an or or KOR．The tiffercnce is in the putputs．

 think albout these resules，they din mot really follow

 Hher imput tis high in the defixition indiates a low， which will be present as lone ats the gatle je 口iky．
 H－A．Ye the ontpat is hight

The MOR gate is a variation of the OR ，frite that doea followe the ligic．When the foan input possibiti－

 70．4．3．

NOR and XNOR Gates

Yias will not have to contend wath N()R. XNOR. and other gare varianions. The C 128 deals mosty with AND. OR. NOT, and schsse XOR kegic abititics. If you learn these fowe functions and understand what the cutpute of the gates do with varionss inguts. troubleshonting the C128 will becuree appreciably easier. I include a bric! description of theme other gates sinmply for completetuess.

NOR is NOT OR and XNOR is exclusive NOT (OR. The NCYT simply changes the outputs to a complemuent. The output of the NOR gate is the complement of the OR outpur. The same thing roes for the XNOR . Figure $10-19$ shows the complementary retartionships. Compare these with Fig. 10-15 and Fig. 10-18.

GATE TESTING TECHNIQUES

When a qate is to be sested the best equipment is the vom and the logic probe. These mstruments bowever, can only give you the surface indications. As we have seen, the chips are circuits within cirturits withis circuats. IJeep down at inancesssible levels are the bifolar trimsisturs, the FETs and other components that artually do the computing.

Thesy are lorever seaked as manufacturing in their meroscopic spane. You can thank about them. but under normul serviring circumstanoes you'I nut ed. counter theers directly.

A gate in at the next kevel uf size and uhey do have test nodes that you can measure and obrain readings. The gate circuit kevel is the level where mose of your vollage snd logic state testing will take place. There are inputs, putputs, VCC (collector) and Vin) idrain! pins reariby avaibalse The rnure vou know atrut the way the Hs and Ls progress through the gate level circuitry, the quicker you will spot incorrect logncal states and pinpoant trouhles.

The 100 level of circuisry is the ctrip itseld. Whest the chip is considered as a single comyonent and is replaced as a test, pou are in the overilew mode. This is the first approach to a repair and is the gist of the chapters up to this one. More thar 50% of actual tronslestrovting that takes place in the foeld is in this overview mode. As matter of facs. manulaclurers thave taken shis mode of servicink a couple of steps further. Ther often will replace the entire board or even the entire computer to gel you back in operation. The trovbled computer can then be placed back ons the factory groduction fine and be recycled back to new.

Fro 10-10 The NOA and XNOR symhore and Iruth twotes
 a lorime factury, tollow the bane procemerp they have

 the expail by chaging the watheted chipe that are iudicotited by the symptame int qouble: Orue tioc

 tiele tect nodes with the wow ar lagir prohe He loofs fow incorrect wollades aikl wroge ur missing loyir stalca: cipsing or wiong suppty waltapes, highe
 sheuld be present, three-Etating in the wTona pheas.

11. Servicing Digital Registers

B
 bogic gates, digital ebetroracs tequires; zootwer enfre caterory of ThI and MCDS dewices. 'गluey at

 in Rumf and Momi. Erery resident of the memary

 registera

 to the butport If ran't Finger in lhe internal circuit-

 which is typicaly aboyt 15 namoseconds. Bestes live
 thirouyh the wate.

 it ta, parming the electricity segra idn
 bit unalsineras in the 41 EA dymanic RAM chips,

 16-tit registar. All the parixus sised tugistera da the
 cueding th their orpancurion.

 nal streunery.

RAM used the voltage that soontained in a capacufor churge. Chapter 8 comtains addhumnal informations on teach of the following chips.

FLIP.FLOPS

The ©fip-ikop curcurt is as uld as elecerontics, If is 2 mpans of storisig a charge. In the digital circuit. the presence of a charge is a biuph. and the lack of a charga is a low. With a lip-fiop, you cata not cmatr store the charge, but you can masupralate it. tinu can change a hugh so a bow or a kow in a hagh. This is

1) wery valuable alhality. Wihen you couple the stor.
 of NOT, $\mathrm{AND}, \mathrm{OR}$, and XOR, you are computing.

A fip-fiop caa be buit by crisecrossing two trinde vacuum tubes, or two npu's. or twn pmpos. or i wo FETTs, or even two gates. They are all able to characterize a Tip-lop. Let's pramane the vep-bystep lip-flop action of the circuit in Fig. 11-2.

The circuit shuws the transistors with iuputs into their bases. Since the inputs are into the bases, the iudividal pnp's are wired as incenters. The

hases are then cross--oupsed into the other pap's collector. When som power the : wo pmp 5 , the: both try to conduct. Howerec. ome always slaghty quicker than the other. There is feedthack from the collectors to the other base. The quicker pup wall fo info saturation. The sluwes one will thus be furced into cutoff. They with hodd this slafe of conduction.

The one in saluration ourputs a high as the pull up sevistar has a large vedlage drop across it. The one cuesfif culputs a bwe siner ths resistur heas no valtהRe drup and is at the -VCC supply yolrage. The twen travssisters will mamain this state. The only way It can be forced to change is if a high pulse is applied to the base of the cutcoff parp or a low pulse is sent to the base of the waturating pap. If cither event takes place the two transistors will hily flop their logn: states. The prep that was cutoff will then saturate. The pop that was saturating will cutuff. The tip-flop Will then hove that state till axxther pulse comes along. so change it again.

Whace you can't get intu a chip so test tlip-ifops, it is useful to understand the way it stores a vultape state. There are a mumber of tests yous can make an dip flop rimuits to see if they are able to store
voltages. For inslance, if you kmow the addrews of a suspect regastes or bit budder, you can use the BASIC PEEK function so see if it is actuanty howling the highs and lows that t is supposed to. The POKE: inmmand can be used to install fest hits matn the receister and then PPEiKK can lewok tu see if the lest bits ever arnived. Refer to Hig. 11-3. These will be more ahout this in inter chuplets.

There ure a number of chips in the C128 that are 』ip-finn typer. The 74L.574 in the clacks circuit contains iwu D Div flops. The 74Lxit7.3 is calked a D lanch.

The 55w chip has two separate Mip Dops arsude. The Ap-flapps are cumpletely independent of each other excepe for the lact that they share VCC and ground. The liming abhiry cornes from some compurator circuits that are also built tanto the sibron. Let's examine the Commadore's chip lip-dups.

74LS74 D Flip-Flop

The 74LS74 clip contains two flip-Rop eircuits. The drawng of the pircuat was stuwn in Fig. 8-14. There are two pons for VCC and ground and six other connectivns.

 THEK PEES

Thee E）FF has vone Drala input．In fact，thate Ea why it e eselled a Di．Other type FFer are calleod th
 minut 这正single tugh or low at a ture．When the lug－
 เวrait．

When a low enters $\mathrm{D}_{\text {，}}$ ，lew will sppera the the Qoakput Gis the inpurtall undpult．The other inat－ put，＂ 9 ，will become a lunh＂This ts not an inipur－
 rutatut is the one that umany rasper the lope state

 for the antn trarider．
 Thuy arte Futent and dipar．They are whed some
 premell the Q outpot to a kigh，the ingut pin prestel
 the bow is innerted at the Glear pin．

74 S3 73 L Lattch

 ablle pien．Irin 71 ig the latch emable．

和事 the datia

 VTC，The data at IV？and liti arrwes from the atul－

 the zigbil time．

Fig. T1-4, The typabi blapy crivier metig marjs.

C.ancoun te

四

 toqether qu one dack lime and one there－state lines．
 with the strobe signal from the WTC（＂Rhs ．It will

 tita mobles in sind takes the plane of the hats that just 险配
䌽e chip．The sigsal AEC also frym the VIC，will tum the clup on and ofl by exercisind the them－9tabe以

 bits and hafll theto．Then，wher given antarate aig－

 nore werautile then the latel shows ther wo be．

sertion than acts as 日 l－hit rembere The regiter storer a contral bit，（line of the contral bits turns

 tery sheratic．
 spenal circuits ch
 cifferences that malhe tit difrollt to ose an a reg＇s－ ter，The kixin difference being a reference voitage
 rollage to store ${ }^{3}$ wande，

 all el tri isegative－WCC．＂The impat signal tollers
 at the coilector of the other papis．The buse of tue

The refereme aigal，ats it is apuled，forme lhe日econei pap to eiller cull of of satinte．When the

- Whc. If the pinp is saturaligig the crilector valt-
 lj) sialitu。

 critgut a bigh or a low in rasponse to a high or haw al the anput.

 Yolls infager the comparator which in turn sets lhe

 storte on the keyboatd, the resultatit pulse le sent

 wich operatigg in bane-short mode.

COMPITHRE REGTSTERS

When your get nipht down ta if the wigita insides of orecomputer is guite fike aby ether, The:
 compules just the any other beard. tomparmin is

 butioning. deceating, multipleming, and othet duties

canke tyen of suppori circuits die discy Eund wan the

 portall thips.
 tion af mumbery. Ail the calculating all the bormine
 ather lasks that the momputer es able to do is actir-
 numbers ant cleyer codes whe letters and characlecs but they are ntill mumbers, The nanbers ge
 the lopge stateg are mumberis merterthefers.

The regialues ean perfurmi a finved group bt

 after bit, from a plart of L-L-L-L to a botat of H-H-

 phemetil, $4 \mathrm{MD}_{r} \mathrm{OR}_{+}$dr MOR.

Hescres being able to profom tilese foks in the
 teats of the registers fron come register to dowthen. The contcxth af MFTH reystera can be stoned in

 lives.

 Chapler L2

Shuting

An important ability of a register is shuifting. What is shatting? It is the talient a register has of bemg able to shift bies from side to side. For example. suppose an eight bit register you are working with contains LLIIL LIILII. If you instruct the regrster 10 "shift the contents one bit to the keff," the register win go to a state of LHLL BILIIL. The contents of the register moved me bis to the beft. If you now tuld the register to muve one bit to the right, the regester would then change back to its original state. LLHIL LHLH. That is shifting. Another form of shifting is called rotating. Shift and Rolate are important instructions that she MPC and other chips with shify registers can respond to.

Shift registers are not mew. A skift register is formed hy adding some storage flip-llops to an ordinary registler as shownin Fig. 11-9. If an 8 -bit reg. sster is to be able to shift, it needs seven addutional ilip.flops. The seven FFis are installed between the eight indivydual register bits. They will latcts the individual bits as they are transferred during the shift. for example. the register coments frum abrive LLill LHI.H, could be shifred one bis to the left in the following way.

Nirst a copy of each H bit as placed into the latch wo the left of the regisier bit. Next, sll the register bits are replaced with La. The last step is to move the IIs out of the latching FFs into the next bit to the lett. The one bit shitt left in onmpiete.

The shifting and rotating of bits in a repister is a valuable talem. The 8502 respunds to ranchane-
langruge instructions such as Shift Lefh, Rotate Kaght, etc. Upon reccipt of such an instruction the register performs the shif. Between the reqister tuts and tim talches itrstalierd between hits. The highs and huws are shiften. What dues the stuft do numberwise?

Let's think of the Las and H_{3} as binary os and 18. Suppose the shift register is filled with 000) 0001 . In decimal, thes is the number 1. The register is then grven the instructions "shift one bat to the left." It does so and the regaster then reads (youo 1010. The 1 moved to the left and the value of the register in decimal is now 2. You are probably think. ing. Why this is exactly like the banary adder. No it's not. Eiven thought the adder, atter an addition of 1 . totaled 2. thin shits register has nut added but doubled its decimal value.

Tius beconmes clearer as we instnuct the register to shitt another bit to the left. The register then shows 0000 0100. This is the decimal value of 4. The regener has drubbed agan The alder register. afier another add would be three. Should we shif left once more the repister goes to (0)001 1000), which is decmal 8. The shift duculles the value of the reftister when it goves one bit to the left. This fact becomen very vaheable when you are manmpuaning numbers as you compute.

If the shiff left produces a doubing of numbers. what happens to the numieers during a shift right? The value of the register is divided in hall as the nexister is made to shift right. One move to a higher significant hif multuplies the register vatue by fwo.

The shift repiztes has other juhs if oll do. Et

 pet the dasian the rivilt place, in the right forms, at

 is transfred in of serisk was, aner ane mire, the

 leave the efight fines in the bus ned enter orse wire in singte file.
 toter a parallet lacy line The still tegister can do

[ud The shift repister can receive a serial dati

 latches uta the repigter. Euth bele hotifor has an cart-

 hits fiow mpto the data bus as a parallid mignal. Figure 11 - 10 313strades this process.

 tentas. The latah is then cannested to the atifl resg-

 of the heat sigedicant bit,

Clearling

An knporgnt job thit repgetar ax do by

Enefore

Atter Dermg clearnd or resat

 forsinamet
lustaten thas uden, A reprser usually must start operating in a clear state of 0.

While the varimes names for thas process uㅐ mean the same thing, there are sonse fine distinctions. The word reset seens awkward when meferring to the stan of a register. It seems to make more sense tif a register is clear when it starts uff and atlainz is slate of reset the second time it Roes to a 0. A repsster should hecome set lo a 1 before if can then be reser to a 0 .

Whateves the variatkons in defiritions, you can thank of the regisser heing clear, as long as it is in a state of 0 . When a register is cleared all the bits are reser to 0 . There are many clectronsic ways a
reglster cam be zeroed. Youl can add the correct states in a repaster and end up with an ors. The register can be stiffed into a complete 0 state. The register can have OS POOKFid ento it. The regrater ran have ANI) or OR logir applied to it to produce Us. Thre clearmg of registers is an ienquxtant ability and besudes proyramuning is used extensively in the fartery during quatry conciol texting.

Complementing

When a register es complemented, all the highs are changed to lows and the lows are changed to hughs. This process is shown in Fite. 11-14. This is casy to do efectronicaty. If you transfer π byte of

bite from one seseisere to arother yers cam change the state of the indisidual bits. All you need do is pass each bit through a NYT gate as it moves Crura register su register. The 18 will change to 0 and the Of witl hecome is.

At first glance, this iooks thke an interesting bus not very useful clata nampulaton. What value can the complement manewver be? As it works oux, in
 Manite ma
 rehatvely simple. We've explored the binary counter gircuit somewhat. Wisth that circuit it is easy to add numbers. It is also easy and straight furward to add one register to manther. Simphe multinairston can niso be perfuraned smee omulerplicatem is onty the additiun of a lut of the same numbers. The tughtning fast rectistera perform mutriplesation by simply oddmg the group of same mumbers tugether. It doesn's need a multuplication tabic like a hmsen dover. To get 4×8. the registers pras add $4+4+4+$ $4+4+4$.

While naddinno arod multuglication lend themsefves to FF regasters. sublraction does tout. In urder to deagen carrmes that will subteact quadkfy. expersive anui difforelt desigas have in be manulactured. There is an easier way to get the commuster lo subrrace, it is called swhtrartion by addition of the a cumplemerkls. This is tricky. but suce uscheraroood, simpule

It wroks orot. and veso. l° bave tes take my wird for it, that if soxe take the complemens of a binisy number. and acod it in a centain wasy so anneher btnary number. the result will be the same as if you had subtracted the oripisial number. That is low the Rron2 in the C128 does sabtraction.

Ifm not anoing intu a proof; there are plenest of bouks arumad on the subject if yue are cturious. The knowledige of the subteraction mettind is not sutal to the repaie of thee Cl23. Fur your infortration tlyutigh. the C"128 performs the suhtrartion with the swn's complement

When you change the Is to Usant the 1) so 1 e in a register, it it calsed one"s complement. In orter to shtain the twu's complements, you weht al

So the repisler comlents. That maikes the fegister contisn the iwo's complemeat. In earder to subtract ithe original regaster nomber, the two ${ }^{\prime}$ sonmplement number is anded. The result of this addition is the same as subtracting the orignal mumbers.

In case you ane curinas ahout complex routipticarton and divissen of numbers, microcomputers usually have special subroutnes installed ua their ROM chips. These runtines are called every time a long nuxuluplications or dsvision prophlem has to be wolved. This has nothing in do with compienrenting. The important use of comphementing is subtractoon. There are other thungs a jorogrammeer might do. These are of litthe interest during troubbeshootong or зерал.

increment, Decrement, and Jump

The Cormoxdore 128 has a number of refisateras Uhat are comtinualy crounting up, countang down, or juss fumang from one bunary ramber to anuxiver. For example, the 16 -bit Program Cownter is constantly fong this. The PC : always ccontains o binart mumber. The sumber is the next andress in the muencry map that widl be contacted. When the namber adsasces by one, it is said to be anencmendid by ane. If the number is redured by one, it is diswemented by one. Silould the Bumber just charuge to a number that is for from the previnus number, It is makmg wimus.

These three segister ahisitien are vital in the ceperation of the PC. The PC. is atached to the 16 whldress bus limes. The 85012 gets connected to whasever mumber the PMC puts on the address buy.

The PC is buill to sutmraticaly incremeat by une: after every address eyche whik runnung a protgram. It dines the incrementige cuwimally unteas It is insiructed by thr: program en dn ntherwise. The necramenting is simply akdioth a \& to the least sispnificant bit of the register. If there ts a low in the L.SH ot is replaceed by a high. Shexuld there be a hight in the LAHs, the lugh as tranalerred to the vecse tighter bit and the LSB ends up with a low. Refer in Fils. 11-13. As each new hagh is aprilied to the LSB the letai binary mumber in inctememted by 1. Nint that this promess is sedition in the pexister asd now stift.

ing which contindaly dialiber the kotal with cant shiat The murntore interase ace ate time se the andAlion catries from "il to hiyner bith

Decrementing is the reverse all imetsentina

 dex tegikterb, Ome of the tiduniques of indeking hars to do with dectementing a register fiter exch addessimg cyole. As a 1 is remeved the entire repister binaty mumber is refucell by \ddagger

Ipormeating frid decrementins repisters by 7 is a commot protice during compuling. In stititan. registera can be thanged drastically. For examples.

 arrives, the oumber conde be fluded to the prestent

 ad gropp off \{armbers and lands par the new nimber
 of the program counter reppster.

AMDing and ORing

 the chatputa of the twon remplete can be ANDled to-
 be phaced into thind regoster for storthen. The thind
 repisters

The OHing of twro reysutes t-an beramplished

 b) Comameore.

 aHH, arte ahle te incrament, dectrement, thear, comb

12. 8502 Microprocessor

T

 The polot Lyht wid turm on ofaly, power wila be pex-

 der thene crovitions, in inderted, The entor is the

 monde faills,

 and Plutare involred becule they perforta the ge-
 Lhal then s.

The $\$ 80$, wita

 come on properly, then liae up the symptontits and

Pote that the sympron spacifics that puter tra
being supplied properly. If there is no power, this chapter dones not cover the troubhe. Chapter 24 has the no-power slucy.

ADORESS AND DATA BUS LINES

Wher the mules ase sone and power is oksy, then the first truubleshoulting sfep is fol fest the address and data bus lines at the th502 pins. Coming nut of the pins in Fitg. 12.1 are the address lines: $\mathrm{A} 15-\mathrm{A} 0$. When these lines are operaung okay. then they are runoing contumually and cutputting vanous yets of bus according to the data that is conume from the uperating system in the ROMs. Accoading to iorstructions, the addreser lines are upening up lincatoons and evther reading the locstion's data or writing 80 the locationn. The readmy and writing cause hits in be corsstantly uraveling the dara bus.

You can detect the bil muvement on the 16 dodress lines and cigght data lines wiols a bagic prohe. The bits, buth addiress and data bots, travel as waves or pulsen. When the bits are to motion, the pulsing is called activity. The lopio probe will turn on its Pulatie bight.

Issike the 8502 , by each pin consection, is a buffer. The 16 address huffers are two sets of reight buffers each. There are cight called adklress bus thisw and cight called addresss bus lnw. The eight lugh pans connect so lines A15-A8 and the low pins are to tores AT-A0. These designalune follow true in form hark co the innards of the chip. Deep inside are the Iwo sections of the program monner: program cumber highs and programs coumler how.

Alno deeps in the ctup are the other registers. Figure $12-2$ shows how these registers interact The stack pointer register connects to the low part inf the adderessing system. The ALU cumberts so brith the low and high sections. The inpul data bech also corrsects eo both the kow and high.

Wiben you touch down on the addressing pins, witi the fogic probe, the address bats are coming from ane of these fout regisfers. The moses peomibeof rexinser is the 16 -bin proynum counter, If can adidress one of the 64 K mentory haniss because is has 16 pins to form bit combinations

The AlC mad the data intels alsu can wotress the entre memonry map with thent nutpurs. The stack pomber, thuugh. is enly attached to the kower address lines, AT-Al). It can only point to 256 fi memnry locathons with its right-hit capacty.

In the RAMP locations, a special section is assigned to be the stack. The stack is proen 256 addresses, from decimal location 256 through 511 . as in Fug. 82-3. The 8502 uses this area to store temporary data, subroutine contral bits and interrupe buts. I gove mave detait on the stack later in this chapter.

The right thea bus lines, uriake the une-wisy thatgring address lines, cun both urput and cutput data hits. Wheer data exats the UT-D0 pans, the bits are cuming caut of a set of eight data bus buffers. The bets continue en lo whatever weation haus just heen addressed. When the bits arrive at the kxation they ester registers and are spored or produse somes sant of acmon. It is said that the provessor has just ex. exuted a write.

When the mocessor za dxmy a rcad, thrugh. the bits aree eatering the $17 \%-1$) pins. (nace insude the chup. the bits have twu possid)e placess they can go. If the kiels are ordenary data, they go in the same dinta bus butfer stage that alsen can uuspus bits. Two bels of eight bulfers are in the atage. ()ne set m pousted out and handies the bits thal arc beavang the pronessor. The other eught butters are ponnsed mward and handle slae input bits. The input bits are huffered and enter the processor circuits.

The uther phace incomang bits can gu 90 as the erestrurtan sepziser, known as the IR. Whes a program is being read by the prucessur. Ifrat ant matrucson is read and then the data like instruction releers 80. The instructions gn in the $\mathbb{I R}$ and she data goes in the data kis buffer. Figure $12-4$ yhuws the as. rangemerst.

STACK

There atre a number of imgonant rexnsters in the 8S0)2 that will be covered now. One such reginetr is the stach poimeer. The word poineer samDly refers to an address. The stack is allocated dec-

 AEC signal from VIC.

 tote. AO-AJ. of the program counters.
iunal addresses 256-511. The stack prointer is nine bits wide (see tiig, 12-3). Nine bils are able to form enough combinations to fwold a stack adidress. The ardoresses that the stack printer repaster are able to hodd are, in himary: 100000000 to 111111111. The stack slarts with 111111111 which is 511 in recimal.

111111111 is the address when the stacis is empty. If the R502 PuSHes a byte mito the stake, then the byte enters $11111 \$ 111$ and the pointer decrements to the next lower empty mander: 11111 1110. The poivater register leeepn decremeating as the stack fills up. The stack is able to store a page (2556) of byles.

时 1

 0). is atways sum al 1 This givas the reposter the iange of 100000000 to 1 i111 11 i1. which s 256-511 in decirnal

11 the stach is near iull. thess the pointer crould grad I (1000) 100 . Stousd the Brot Fllid a byte off the stack, the pointer would then incremwent and point to the sext empty byte holder: 1 On(x) 01(01. The stack area in RAM is the repusitory where the stares of the regusters of the $\$ 502$ can be stored, when need be. For example. as programs are being rus there are usually lots of internupls. The interrupt could be a permpheral device that needs immedtate aftentson from) the 8502. A desice that will have priority over the rumung program.

The intempt forves the 850 C to stop at the rext cunservient mumbent. Meanwhile, all the registers in the 85012 are in the midst of a lot of data mamipuia-
tion. If the 8508 should just stop to sermee the perpheral internupt, what happens to oll the data in the registery? It could all be lost as the 85.02 services the interrupt.

As you may have guessed. all the data in the pertivent registerx are IUSlled onto the stack before the R 502 deals with the internopt. The repister bytes are stored in the stack tempporanly. First the contents of the 16 -hit prograum counter are pushed into two stack tocations. Then the contents of the If and \mathcal{f} index registers are pushed on swo more locationa, Foilowing that, the one byte in the necursulator in pushed on. Lastly the eright bats in the condition oode register are placed into one byte.
 wieke llye intermupt.

 when the naternipl artiveld. The same som muet te stare that ceppigters to the state in wrixth they had

 .ff the bytes are propard wat reverge ordex that they entered. The pornter etuth up at the ongina

That bits in the stach porinter ate hot stluted in the stact ara terajer they ane Toll affected by then iaternat. They nemain ia the 8 ded to terutaller hatere the byter were stacher during the nuterupt.

titinned off intu "pugc: ". A Mage is 逆mply 256

 15-259,

ARITMMETIC LOGIC UINIT

 fricupertereser except for the fat that theie cincuits. ate mickocrpic Essertially the strme tetetromic maniphativns lutwe beet gexing on for yever in

 the dida riemipulation.

A troual But has two lyte-simed ixparte and one

able to do the following things as it crunches the two inpute 80 a sangle cutput. First it can add the iwo inpurs inte a sinple outpul result. The addinon, with some mathesnatoral tnckery can also sesult is subiraction, maltiphicatiun and division. Next the Aldy can n⿰wopphorerf its intemal repisters, making al月 I's moten 0 's and all 0 's tatu I' $\%$. Is can rheur one of ita irquats: that is. change the inpors to 0 . Is can becoure a shift rexister and shift all the biss in cane of the inputs evither to the raght or in the left. Finally it can perforim logic manimulations auch as AND, OR and Exclusive OR.

Shifing

When a shift tept is made, the value of a fegas. ier curtents is sloubsed, if a shifl right is made. the satue on the negsser is disuded by pwo. When the shift right is made, che lowest sigroticant bit falls nus of the reylster into a special bir ikilder io the exsodision ende register and a () is forterd into the messe stgnefrane bis. Iruring a ahuft Sen the Ms bit fulls out into the bir houder and a () is placed into the LS bit. figure 12 -f depmits the way in whict the shift works,

The shift ability has a varation callicd poluse. Ketatme werks to the same fastum as ahiftme ex. cepp fur une exajur difference: when yexs shitt a byte. eme eff the end buts falla moto the fat holder tan the $\mathrm{L}^{\circ} \mathrm{C}$ register.

With the: sutaire functon, the hut thast tads cant doers not set bost, as shown in Fig. 12- $\overline{\%}$. It is caught in the CC bet holder lixee the shut function. However.
the contents of the bit bolder are brought around to the other end of the rejgister and instalied there. The same thing happerse with either a notate right or rutate ief. the bit gast tavels in the other dierec: toan. The CC brt hoider mcts as a minth bot of the shats rekister that cornaeres the rwounds nither register into a loop. Ifcidentully, the CC register to alao known as a ! Tug semater and is rovered later in this chapter.

Logic Manipulations

As the name irmplics the Alll, besides performing anthmetic calulatoons, alsu does luser mamiqulations. Lugic is a form of mathemsaoins that deals with the NOT. ANL, OR. etc. cakulations. In the ALU are furmas of these wales to dh the lugic work. for instanne, the crmplementing mentionsed eartier is actually a bugic jub. When al register is comm. plemented it has all its bis nen through NO)T gases which chatgere $1^{\prime} 8$ en 0^{\prime} 's and U° s $10 l^{\circ} \mathrm{s}$.

When the ALU' $A N D s$ swo irppais. it user one. Aivi) sate for every bor position. 7.0, ia the Iwo inputs. The iwn MS pasitions, bits 7. can be the input to the position 7 AND gate. The sesultant ANill output becomes the outpus his 7. Each set of hits can be ANDed in the sanke way. An ANL uperation pruceeds simultanceusty in parallel. The operannon forms a Intat ANB)ed byte.

When you $A N Z$ a byte with another byte, all the fint setts that band ois will sutyut a () Ag the brit

 amen m.

Filluws you to mank a brice. If you want to make sure that certain bit gositions will end up with 1)'s, then you ANI) thuse bits with 0^{\prime} s. Thiss procedure, for machinue lanunagre ponkramaters, slown in Fir. 12-8. is knoworn as masking oll certaim bit positions.

Ou the etther hand if yous want bil pusituons to cemain umehanged, then they are to be ANIned with I's. These bits are thus not masked and will be the sarruc beffere and after ANTling

The ALL! ()ks swo mpat bytes in the sarme way:Whemxever one of pwu tnpmus into an OR gate is a i, the matpert is a 3. The only way two ORed bits can pruxtuce a 0 is if buch ingruls are $0^{\circ} y$. The futal result of ane byte being ORed wrth anuther byte ie an ORed ouspur byte.

When it is necessary to chasuge uertain bits in one of the Ald (l) mputs io I's, all yrou have in do is OR the chusen bits wids L^{\prime} 's. Figure 12.9 deanomstmes the process. Whether the bis is a 10 or a 10 when is is (3ked with a I it will be a I nutpur. The brtm thas are ORed with a 0 will oul bave any changes. The 1° 's will remain !"s and the (l)'s will remain 1)'s.

The R50V is also athe to \&ixclusive ()R two input byten. Whets two inpual bits are the yatve, es thet 2 pair of 1 's or 0 'ro. then the outpu! bir will bee
a 0.11 the two bits are different, a 1 and 20 , mer ther way, thes the output tit will be 1. The totas result of a byte being E.ORed with another byte is a tutal EORed byle. The EOR operation is used to detent errors and correct ende. While this is mustly the proprammer's province, these logical manipulatiuns can be installed in enpintering diagnostic: programs to detent subule circuit faults.

ACCUMULATOR

Veteran computer people refer to the accumubitor as a scmitrch pad. This name came abuul becrusere it is a hulding place for the benary nambers that go in and out di the computer. The accumumint regaster it the 85urg is an eight-tin piren wired berween the data bus, D7-DO. and the ALU. The proxerammer thinles of the accumulator mat donessit crobuero himsell with the ALU. As far ats the programmer is concerned, the ALU is just a calculator that the accumbiator uses.

The accumulator is the most promunent regester. It petforms an of the arithmetic and logic: manipuktinoms with the aid of the: ALU. The accumufolor is wired. with eight data liness, to the internal data bus of the 8502 . The intemal data bus leads to the data has buffers and thest out to pins ID7-EDO.

The connection scheme is shown in Fitg. 12-10. When you are probing the eight data bus pirss, you are actuatly cxaminng the eight bits of the accumus. lator. When the consputer is operatinp okay the logox probe should show prulses on all cight pios just bike the address pins show guises no all 16 pins.

The accumulator can eillser recerve data from she data bus or output data to the bus lines. The
data bus buffers decade whech way the traffe should be allowed to dow. Insude the microscopic data bus buter are 16 YES sates. The gates are thene-state. Eight gates are wired to send bits out of the 8500 . and the other eight gates ape wired so receive bits frum the memory map kcatoons. The gate wiring is callend "head-to-toe." The 16 sates are an mon seres with the eight dita [mes. Twu gates to a tine, the

iwo gates though are mparallel with eacla ouber. The two gates are eact pointed in the opposite directuon from each uther.

The three-state YES gates arc controlled by the Riofi line. Khew the line is high, the eight pates that process the read operation are on and the cight gates that allow the write are furned off. If the Riout line goes low, then the reverse rakes plave. The
eight read gates go off and the write vatess turn on. The arcummatator accepts data during a read and ounpute data if a write is ordered.

INSTRUCTION SET

The 85122 is able in receive instructoons in the form of bytes of hinary bits. In a byte there can be a porsible 256 different comberations uf bits. How:

Wyte to the B50，The byteg are whet the proyran

To use ar aralogy，suppoge you laver mombie
 open it up，The lack will reminn Tocked． 1 加 yraw en－ ler the mumberg in the correct gequence，After you enter the cumbers all the tumblicte will tall ard the

 w上e of 56

｜rstrucilion 日yte

 fise foutions．Other bytes the proman are that in－ gtructions，they are data．The tostraction sre
 mhtion that the invowninns procers．

Typucal instrecting are shore，lowi，win，sub－

Each of the billa in an instruction，shoum in Fig． 12－Il，ham jer notm job to do．Some bits ause the： ALif to pertorm a job．©her bite specily what ad－

 tion of each rixutraction and the three leater pomernas that indicate the gob．The tree letter

 roder fot jess bleary bit set．

Fotch and Exbrule

 ducts three cpcles．One is the strath．Two 衴 the Hecting．Three is the mandian．The entire oper－ otion ias loorely enhed retch and erowite．Figure 12－12 illustratey anc aportion．

As the tetrb begrow，the progranc ementer ant－ puld the lfaddreas lots onlo the address bus．The high bitw sallect the chim that faxdressede and the
 the eatme lime，the kirw line is ativated－a hath for a resai and a inur For a write．The Ri－w Tine sets．

 जtration．

Tabio 12-1. The 8S02 Inatruction Ses.

8502 instruction Set			
Instruction	mnamonte	ingrruczion	Mnemonic
Ares with Ciaery	asc	Jurap to Subruwtime	JSK
Loges AND	ANI)	Leard Accumbutur	LOA
Arnhmeric Shim Lely	Asi,	Lanc x	- 0 x
Eramen in Carry Cloat	BEC	Lead r	LOY
Branct il Cermy Ser	4 CS	1 Ogk: Shit Rigke	-SA
Eranch if Resulf 00	3 EO	No Graraman	1000
Tess Bn Eranch is Mincs	Q.T HV1		fria
Branch if Mot Equer to 0	GNE	Pugh pr Statss	Prem
Oramel if Flus	EF:	Pull 6	PLA
frant.	Bax	Pill 0 estatus	mep
grareh 11 Oundism Cinat	Bve	Hexate 1 am	RCH
Braselt 1 Couerewo Sol	P:	Rutale Rige	SOM
Cimar Cinty	CLC	Retum emen imineript	R"
Clear Docimal Flay	CLD	Roturn lrom Subroutime	H1S
Cumat imerruzg Disazio 	$\begin{aligned} & 0.1 \\ & c i v \end{aligned}$	Supsrach wish Carry Sir : Cam,	SBC
Compree to Accumulary	C,w?	See Desimas	Stic
Compaen io X	c.px	Sal intamiat Dasale	5 SEI
Compaze in Y	cev	Sinom Arcast alatur	STA
Dercament Blamery Dexmement X	DEC	Sitore X Store Y	STX
Oecternant y	DEv	Translar is es x	tex
Evetuswe UH $^{\text {d }}$	EOR	Transle, A it v	tay
Inernemant Memtury	INC.	Transtar SP es X	Tix
I9r.amane x Inc-argers y	inx		1×A
Jurap	Jamp	r'anster y in A	TiA

The address bits specify. That location is enabled white all the other locatons on the chip remsin iumed off.

The accessing takes a few hundred naroseconds, dependeng upan the access speed of the chip. The esght bits in the lucatiun are thea let out on the datal buss. The eight bits tlash over the data lines so the 8502 . They arrive at the instnuctivar renister, the IR. The IR is eight bits wide and latches the cightbie trestruction. Onoe the eight hits ann iatehed in the IR, the arsinuction fetch is complete. A byte of ctatia could have been fetchen in the same way. The only difference is that the data would have been seat through the data bus buffer instead of being latched in the $\mathbb{I K}$. The BEOOC weruid hase knowan what to do since the matruction would have precedted the dilla and the instructions would have arranged the dats reception.

77re denxding cricle begins as the IR releases the instuctiom and feeds the instruction bits intu thee insiruction decoder. The decoder is a mactoswopi: PLA circuit. If takes the bits and producns a set of curtpui bits lot use is the other 8502 registers. shown in Fis. 12-13.

The decoder coubl sead ante bit so the Y indes register, one bit to the X index regrater. one bit to the stack prometer. une bit to the ALU, une bin to the accumulator and one bat to the A 7 -A 0 low sectoon of the progeram counter. It also has one bit for the mput data latch. These single bits are able to turn these registers on or off according 10 what instructiry is beng processed.

The execute rakes place is the decodes ane sfriven by the chack. Eath clock cycle makes the decoder perionm an instruction step. The varivus misiructions of the RSN22 need ditterent numhers of

 the aciusl carclan execution of the instruction

cylles to complete the instrution. Surne instructions like "dectement the Y repaster" can be executed in two cydes. Other instructions tike "arithuncer shill hert" maght aeed six or seven cyeles to complete. When the 8.50 is running at a 1 MHx pace a complete cycle takes 1000 nannsemonds or 1 mixcrosecond. When you think of timing it is ussatly in terms of one cycle.

Once the instruction is decuded, the variouss registers that are takng part in the instruction exetustion are turned on and the instruction is able to take place. Durng a read, the data follows the int struetion biss on the bas. The data could be hits that need in be processed or the data could be an anddress that peeds accessing. Whatever the dila anight be, it is not an instructran and goes to she data bus buffer and trot to the IR.

Thas byte. whech is after the instructiom, enters the 8502^{\prime} s internad data bus throught the data bus butfers. The data then enters the enabled registers that curnect to the internal daza bus and is proressed. The text instru-tiun with its data traifer is seady to be ferched and exeruted.

The 16 -bir program counter negisters have a fuill in auternate incrementor. As soos as the PC nutputs an address, the binary value in the PC is incremsented by 1. That way as sonk as the R5002 Eirsushes une fetch and execute cycle. the nexp arlIress ss sent out over the address bas. The PC will atways simply increment isself uniess an addressing: inssruction bike Jump. Branch. Call or Return is encrountered. Theen the PC will hodidiff on increments. ing and follow the addressing instruetions of the byte.
(Onee the special addressing instruction, surch 25 Jump or Brasuch is dimpatected, the PC returyis to the autonatic mercementang it is buils to process. The ic cant start at the begiming of a tenge uregramand sundiessly morement concimanily uniess it is stupped by one uf the apecial addeessing instrutions. There are crady a feve addressing instructions that the 8502 will respond to. There are ten Branch instrurtions, two Jumps and two Relurtis

INDEX REGISTERS

Besikler the accursulator, the X and \mathcal{Y} irulex registers gel most uf the wetion. A maxhine lanksuge
proyrammer uses them coutimatly, Indexing is a valuable lechrique. One use of index repaiters is ther nhbisty to took up data in tables that are installed in the memory map. For instance. a multiplication tahle can be placed in a program. The address of the first number in the tathe cam be placed in the index register. Then when a lookup is needed, an offeet number is added to the table start address in the index register. The offeres plus the table start numher forms as address. This lowation contains the desired lookup. The table lacation in addressed by the index register and the lookusp is retrieved.

The index registers can adkiress a bocation. Thus tritity and some other programmunp trocks make the irclex register valuable. The 8502 bas two eight-bit index registers, calledi X and Y. They are used istroust as often as the accumulator. In fant, the index registers, besudes theit tricky addressing capabiinnes, can be sised as scratch pards, to stare data semporarily, juse tike the accumubator.

The accunubator and the index registers are the link to RAM locations. Yon cannot sterre data derectly tinlu RAM. In order to store data in RAM you must first load the data into the accuunulator or the index regpsters. Then they will store the data for you.

The above liscussion reveads what is hoppening m the R502 and the things the undex regsters can do. If you want so check an isudex register you can do it with a bitle BA.SIC routine. For example, when you write a program with F(OR . . . NFXT statement around a POKE, you are creating a loop.

$$
\text { 100 FOR Z-1024 TO } 1054
$$

200 POKE 2.0

300 NEXT

The BASIC ROM in turn sends out macrune language hifs that do the fellowing to accounplish the FOR . . . NEXT Boop. Pisst, it hads the accumilator with the data that is to be POKEd. Then it transSers the contents of tibe accumatatur to the $\$$ reqister. Then it storem the contents of the accumplator in address $1024+\mathrm{X}$.

The first time through the foop. the 0 is stored in 1024. The next machine language instructiun fs: increment the \mathbb{X} register. Once incremented, the X regester becomes 1. After that the X register is compared with the derxmal number $3111054-1024$ + I). If the contents of the X register, as that trme. does not equal 31. then the hrup contizues. Becense? X contuins 1. the foop continues. When it finally does equal 31 the regsters 1024-10.54 are loaded and the routine stops.

The above shows what happens between the accumulator, the modex register, and RAM when you write a POR . . . NEXT routine in BASRC. To sam it up. if rou wam to test the X index register in the
 cutes. If it does, then you have exermsed the accumblator. the X index register, and a section of RAM that you might have P(OKEd data into. They are all apparently ukay if the loup works.

During repuir work, the index regusters are nos usually a problem. They, are part of the 8502 biock
dazryan thoushl and a servicer shoubd be camiliar with thar epperation.

flag register

The flay register is shown in Fig. 72-14. It is also known is the Sitatus Repister or Condicions Cude Register. It is a specerall eight-bit pegaster. It is actually eight sinuge bit registers bunched trmether. Each of its hits roee ts own job. This segister in the wher tans cight bits, but onds sevect of the eight are to use. Ant posstion five is unased. All of the rest have tidividual jobs-

The bits ane called tiags. The far can be m onse of two states. I ur 0 . on or off. When a llay is set to a 1 it is in use. A 0 bit means etbe flak is lyizg. s:ill

The flagr are ciual dureng a proweram sus. As the yrogram is progressmg frum line to line and mstruction after instructivn, the llags are continualify turning off and on according to the instructon. Morst of the 8502 instructions cause one or more fings to

 15. ITM

The raachine lanpuape progtaturter manst be comquetply apare of every tap that peta set (

 The Oagn comotuch mosk of the ir burnmes with the

the flage do is to set when the secmmulater athains a parlicular state. Let's examme some of the states 1 flat the accuroularor can get itself into.

Programmer's View of the Flags

The fing register has its eight bits arranged ns in Fig. 12-16. Nute that this bluck diagram show' will of the important 185012 registers except for the instruction repister. the data hus buffers and the ALU. This is because, $2 s$ a machine language program is written. conly the accumulator, index, stack pointer, program counter and hay registers are considered. The IR, butfers, and the ALCO do not enter inlo the arispamam, Hiweser, for bardware runsidera-

be consudered, becansc amy of 1leetr can frit ande hring duwn the machine.

Thas programmer's block diagram shows the size of eash regoster in bits. Note that the accumnehator and index registers ane cighs bits whe. The progran counter, between its PC high and PC low. forms 16 bits. The staclt puinter is eight buts phus the ainth hit: set at 1 to place the stack at addresses. $10000) 0000(256)$ through 111111111 (511). The flag regosser is shown as eight individual bits with bit 5 blank. In the other bits are the lefters. N. V. B. D, I, Z and C.

Bin 7 of the flag reyister contains the \mathbb{N} Dag. \mathbb{N} stands for megative. The negative refers to the mumeric state of the contents of the accumsulator reg-

 and thmir bit szes
 Ihanig calculationg thall weme mative nafobers, the ancurnulator muai tuigt ath

This aldangement wiok woll for the fropranmer but car get sotupliated, Nothim"s perteet: The contifitaion is. that the tley gets sel whenever the

 wated llag mising in ather proproms, fot instance word processing- Haweref, tius is a probleme far the
 fige will beis gat whinever bil 7 of the accumblator proes to al hegh.
 adirness wherl the encumulatry contenes becume a
 rumg tool.

 inetion cary from bit fiv T. of the accumulatpo.

Whent tis overluw becws; \#5pecin ixfectim

 called Brealk, The intstrectin, as it anteves ot the If

 goes bech to coranting in birary endia.

 Lerrapt orall alko set the foit,
 [rase cim be set ander mary canditifis, Il becomes
 zerows. The 2 bin Ean bill tw get get Fhemever the
备 the progitherers puchom.

More About Interrupts

 are three intemuptis that can wnter the instruchent

The RESET Matys, Fig 12-18.

 *RESET beron ife when the RESET butota

Fig. 12-17 Schematic ongran of the 8602 procussor

While the EESFT button in beld downt the －RESET low Btops an activity chung fom or go－

 starts orotking anew－The RESET routmr begins．

 He 9502 can read from mertary，then the trazla ra－ Eerrypt 的g is berfere with the ？
 the Karil ROM．Therge hwo byed ane called a anc－ tho：The wector is an address．The getie loads this sidrets into its program counter and the adrose Tone out ower the andress tris．The address is the Elantines Jocation of the operatimg syogleca＇s initiati－

The weared inlercupl teye into pin 3 is＝ith ，in－

 the expinaion bus．

 signad．Brace in duta corndube lhe chmen instruc

 masam，the 思 508 will ighore the requent．

 Tous gho ather internopt can initerupl the servitu

 part of the kertel ROM．They are also known at
 other addreas in the Kerned． 3 3is axdress 理 the star

 tantine ald the 850 procepds to rime of the rauthe
 tures thep deem complocated and difficill to follow

Whate the inteript bas been Eerviced datl the periphofal that caused the interopt has been satis－

 Hue stark prod places the progerna counder ind buy

 cation．

The differemat is itheir rebthonship with lat

 2＇s state（xappent to bes．

When the REtrolde bey is prowsed，as Fig．

asection nf U29. a buffier NOT gare. The eNMI bracmal then prexceeds in pin 4 of the 850 te.

When -NMT arsives as a swenal from the RESTURE key, the processor ques through the same sort of sequsence as it an IRQ had arrived. except that it houds the program counter woth a rector ad. firess from two bytes near the lop of the memory map in the Keme! ROM.

The term thetor is consusing. Here, it desirnibes I wo byte-sized locations whose combined cortents form one 16 bit address. For instance. Kemel ROM Socalums 655335 and 65534 Ionether comtain the verioring address of the start boration of the $\cdot 1 \mathrm{RQ}$ ser.

Fice routive, Lacabon 65533 and 65532 cumtain the start address fur !he - RES routine. 65531 and fi5531 will be adtressed when -NMI in the processur is lunaed om.

This interrupt operation is not unlike a game where yous are Roven am addreas. Al that address you will find another address than will poont you to the prize, whrh in this case is the little program in K ()M that services the inkertups.

THE 8502 SIGNALS

The Rron has 40 pitws, as seen in Fig, 12-17. There are 16 pins comung from the program coounter.

A5.A0. that outpur the address bits. There are eight pins connecred to the instruction register and data bus butters that both inprot and output data bits. Then there are the three forms of interrupas, IHW, RES and NMI that receeve interrupt inguts. There are two pins for 45 volts and ground. That takes care of 29 of the 40 pins. What about the remaming 11 pins? What surt of computer signats are they acting as ports for?

There are seven pists. 24-30, called P6-PO. PG; is ase input from the CAPS LOCK key on the key. board. When you htt the key is will lock and send a simnod to P6. ta upperilowercase mode, the proczesgor will then only permit capizal letters to be phaced on the screen. PS. P4 and P3 are three consections to the casselte circuits. PF operates the cassette nwotor, P4 the cassette scusur and P3 the cassetteWrte impulses. P2, P1 and MO are comected to the PLA. They connect the sigrals LORAM, HIRAM and ClFARF:N to the PLA.

At pin 5 is the Address Enable Control, AECC. This is an important usput from VIC. The 8502 shares the use of the address bus with VIC. When VIC is permitting a high at por 5 , the 8502 is in conerol of the address bur. Shuuk VIC send a low. rbough, the 8502 is effectively tumed off and VIC uses the address bus.

At pin 2 is RDY. "ready," As long as RIDY is
 goes low. the processor will finish the uperation it is conclucting and then turn off and ket another circuit take over the bus linen.

Pin 39 is the all-important reaul/write liste callend $\mathrm{R} \cdot * \mathrm{~W}$. As the name inmplies, when the lane gows high the read operation takes place. Wheen the line is forced bow the wnte nperation goes on.

Finalty. Phase ϕ is impul from the clack circuits at pin 1. This is the sippal that drives the ssioe. Both the 1 MHz and 2 MHe clucks are input at this pin.

TESTING

Fortunately. the 8.502 is a very reliable processor and is not the cuprit when the compuler faik. However, like any electrumic gear, it is subject so
breaking down. The follurwing leses can quickly checta it out.

One quick check can be made with the C128's. Moritor operating systern. In the C 128 mouke, all you have to do is sype use direcs command MONITYK or press fi8 (if this key is so programmed) on the recyboard and you should see a dospday like the following.

MONITOR

PC	SR	$A C$	XR	YR	SP
$:$	$F B O 00$	00	00	00	00

Different Cl28's might not be exactly like this une, which is off of mF C 128 dosplay. If your display comes up in this way, the odds are very good that your 8502 is working fine. This disulay shows the contenty of the 8502 repisters as you entered the monitor. The contents are described in hex. The progeram counter, PC, is about to address the lirst machine language instruction. The sastus regster. $5 R$, has all eight flags with 0° 's. The accumbiatur. $A C$. is invisulized with all 0 's. The X and Y index registers, $X R$ and $Y R$, are both invicalzed with 0° s. The wrack poxinter. SP, shuws the first adifess on the stack in hex. The B502 is ready for action. The action is entering machine language programs.

The Monitor is nothing more than an operating system, just as BASIC is. The Monstor though kets you propram with the 8502 instruction set and deả directly with the 8502 programmeng registers. This gyves you the opportunity io keep a close watch on the rexisters for troubleshooting purpusez. IV We iegisters start showwing bex contents that ase not predietable, that could be an andication of a bad actung M50k. The Maritor allso works along with RAM, ROM. VIC and other chips. It could provide asswers 10 гераї puzzles.

Of cmurse. a look at the Monitur can only happean when the cincuns wre wnikug enough to respond in the MONFTOR cummerd. If the C'128 is not combpasting enough to show the Monitor responding to the command. then you nuast griab the lagic probe

 perserit :

 an foge as the pina sead the prentribed viltayes on
 nad bears futher investigatuon.

 replacmate. This ta mot a landi and tast ribe he-

 맨:

 trul Bollive the pional, afuf gee where the regrats and wint

䗑
 then arde mot, then you have uncureved of chat that ratild bead to the catase of the lroublet.

13. Z80 Coprocessor

T

 Plus? Thergion Bid. This uperating spstm,

 don is trad the aperaking spstenn from the disk tu

 ing with the approprinte collecith my.
 d

 dows use the B5N for fobl fine ancenaro the Ker-

 at the starl, lhe Zan moufl have accideataly gharted aftressing rod momuk dati. This would cause the
 charge it can edp whatever it wails to that the limis

 2(fi) , mowne-that re untess at CP/M dosk is in the driwe and

 pregrames.

ZgD ELOCK DIAGRAM

Aldarnaterabysters
yemail piv row

B	E
D	F
11	$="$

\|mesertupt Wretar 1	Мппппр
\|ridera 月neymber	
Froureri	

 reatp and ganect ta the inienual dith lus and the:

 registers: They are: the program cadonter, Ple; the
 $5 F^{\circ}$.

 Thee deculet-xanlid arcas reccive siod catput 1.7
 will be bowetul later io the chapter, pare by once
 WIC. Ind men il. Lastly there factic mandarmy + 5

The Repigters

 One is ralled the Man Rugistra bel and the other

 [2ugiglern

 peer the anderes bus. The enget-bil eegisters work with dela Thay inpue mid nuspu bils ovor the cump sus

The X and Y index registers are two independent 16 -bit remasters that hold the special addresses needed for the index modes. The stack pointer in another 16 -bit address that hoids the start adidress of the stack. The stach in RAM is of the land in firstorst variety. Therefuce, if there is amything in the.
stark, then the stack pointer register will hold the address of the tast byte that was placed in the stack.

The 780 has two remisters that the 8502 does snt have. ()ne is the eight-his interrupt vector. This register houds the address of a memory page where an interrupt service routine is stored. Thuring somes

urerrupss, thas vecter will be ;idared un the akidress bus tuadisess that desired page.

Then the 2 Na has an eaghe-lit tremory refresin register. Thus is a seven-tut audress that io designed
 emapisted. forget 3twat it for he (128, however.
 and this output from pras 28 is mot aseat.

The Nom-Progranmable Fegisters

 perfonme the forowigg aperationst il ADDs, SUE

 froubleshowting job taid the understanding then these
 repair pazize of some twamins.

The wher ocn-progranamable reygiters are in the inatnuction register realra. IThe instrution reme
 [17-130, whery the instaction eycle. Theo kite IF

280 SCHEMATLC DAGGAAM

 From the zgicelled whtien. This sighall is a Inw

 tionted eatruc. Eccane the DRHM refresh in mon

It is hetcessiry furig troublestrobing to ftave an underatantind of the unused pins as weth the operatide pins. If an unased pilis"s state should tre intoreet then that star pood clut.

That leares ten cunkod pins. The resin lowr

is witar and beingtaster with the Emet probec. Whet

 I-ckworladge is meded.

Pins 21 mod 22 aite +RI and -WR When 21 i

 Tughe thal indicatich when the ZSI wanta to read firma

 I'0 dence.

 Lies pin 24 to +5 walta to feep il hight and now have

 itad tamot internpt the operation. Pin 15, - Wh T. is the intertapt theil is alloired to warki It is beld
 dewice. If the gith prohed then it wit show praper

The lust tho control prive are 25 and 23 , *BLISREG and - HiTGAE. FHth pain mill show lows

device that is taking over the bus lines that the Z 8 u has sodeed tristated. The device cau then tolke ures the bus. Hin 6 is the imput for the ctork. Thee ctock signals ate generated in VIC. The 280 uses a single phase ctock. The B512 uswey a dual phase chock. They are discussed in Corapter 17.

The rest of the pins on the 7 Mo are $\mathrm{A} 15-\mathrm{A})$ and (1)7-1)0. Thsey are ath threc-state active hish. The atdresses locate registers on the memory map fur readtung from and wsting to. The data pins ane the $280)$ ports for she Iwu-way dacs movernent.

When the addressuing is conducted with an 110 devnce, the eight lowser address bits are able to directly select up to 256 imput or output ports. If the refrest register is used, the Jower seven address buts address all the rown in RAM.

280 INSTRUCTION SET

The 8502 has a Monitor that lets you program or lest the chip with marhene language. The Munilor as nothing more than a program that acta an an uperatank systert, not uriake the way BSLSK in ROB. works. Of course there are ditlercmues, advantages and cisadvantiges between the B502's une of BASIC and the Monitur's machine language waing the Instruction Set directly.

The 280 mo the C128 is not so fortunate. There is no Monitor for the 280 Instruction Set. II you want to proggram or lest the 280 in machine lunghage, yuu wall bave 10 obtain a 2800 Monitus. There are plenty of them on the marteet that will do the job on the Ci28.

If you ubtain a Monitor that witl let you write
 different inseructioms. Thes will be listed will the Monisor or assernbler that you bary.

The most used instructivas in a machuse lanRuake progtan deal with the procewsor :ratlisk and writing to the memory map. The map for C'P/M is very different tham the C128 and C54 maps: They ate all discusser in Chapker 16. Probatly 7() to 80 percent of the instructions are the readiwrice variety that move data between the proopssor and mem. ory. Exchange instructions move dalal but only swap data hetweco registers.

The eeest group of instnuctions have to dis with usme the Aldl. These mstructions ras data threugh the ALU which reaskis in arithrnetic or logie being executed. The results of the dasa processang are then ploced intes the accumulator and the Sagas relatmg to the ALU cuperations are clearmd or set ar.correlingly.

One group of matructions shifis or rotates data in the ancumulatur, ins uther $Z 80$ rexisters, or in mewory. Thege ingtructions have the ability to des bunary coded decirmal mavupulations.

Ancther group of instrictions stops the program counter from routine increnventung and planes special addresses in the PC. These are the JiMP. CALL and RETTIRN msstuctions.

The $1 /()$ instructron gruup is vext. The 780 is whle to address 256 inpur and 255 cuatpus ports. The LiO unstnumionss read in write data berween the processur and memory, and memory and external li() devices.

There are nome matructions theit are able to hatt the $\% \%)_{\text {and }}$ stamipuiate internupts. One instruction, NOP. makes the 780 have no uperation during the time the NOP is prucessed.

There are some bit-handhog instructions. They are abie to set, resel, and test hat in some Zsil regasters or memory. The results of the instruction cxecutiva are then recorded in tbe Day register.

Lastly, the ZBO is able to trunsfer any size. biock of measury to any other group of next-duor neemuny bocations. Another insurucion lets the 780 search a bluck of memony for a desired byic that might be needed.

280 CONNECTIONS

The 2BO cannot uperate with the R5012 cricuntr. Specifocally it has difficulty with the data bus lines. The address bus is nut neally a probicro, because the $78(0)$ is a three-state device. When tonsuted, the valdress bines gn mito a hush-inquedurux state. Thesefore the 2 28i address lines can be connmeted directly tu the address bass and can stiare the lwes with the 8:002. When there is a possuble conllact the Z80 is trastated.

The data lines though are not qute that simpse.

 internices the Zat toblbe dath bus during a rentand the buffer interficees the $Z B E$ to the cllatan bus during： a write gee Fig．1s－4
 must wonk porether th produce ill of the mordes，
 the same linde．Althorgh hoth prowesars ian her on al the same time：Ther nusist，horfaver，filke burns HISiTR ，the chases
 to yiven first use．Whatr ycan turn man the Cild the Zod is in charge．The Zof then perifitmas ato of nitididiations of repisters．Them wecondige to how you lave stated pressing koys fif what is in the cur－ Iriditit jort di chak 面而e，the 280 will transfer cont

 and तan CP／M pmpans．

It a cill
 In the itrive 緛 linsizlled intor RAM，As the CFish periowan is rula，the tall is able to，with the ald of
 ［：0）needs．

The mectunign theal alkw the firif and Tg
 inate to the MMET，wr VTC．Therse sifferals pusu through worme sate and antive at the 280 pin 25.

 Es then sent the the all－impartiall AEC connembits plitring some gates：This unakex ABC Filyh ind the

 Lristaters and the 780 ei lustl in rharge

THE COMPUTER WON＇T START

 board the keyway natith is on the boteroll．The dexe．

 Yoan count pint tir teat reatings．

If the 280 abrould conth oxt then the first thought iy shait CPM wonlt trmin but Cl2s and Cith modes win be ollay．Not sot Since the Z4id is so invofyed

 the masthre pande up．

Howeter the Zat is only nne of live suspecta． Thereforte，when a cluts will how starl，the 200 is in the midtole of thinigas hat mat necensaridy lie sest wf the truable．

The forkwing is a stap－hy－step prowedurc to run When the Clese worn＇t start．First of alac，check and Hrake gare that the power surphy \＆okay，If there

 If the power supply iv exmorated，then lake wingic probe and hegin leatidy the etarcha and data buta
 Ebratts of Figs．12－20 and 13－4．

 the data pen shostd be tristating．Thix is beczurer

Should the budreas of thla pins wot hive prescribed pulses，then you bawe follidy dete．The

 durn it ons．The probe should al brat po Dow and thens
 whide the probe：is still alltarised and the cotmiputer On．ETpuan preesing the butteni the probe should 8 g
 hish apain，

 Tee citising the traxble．

123. Aso in the resel lime is a WTT gate weden from lifis. Then these is the rese? switch, SW'2, two ING14 dindes. IR:A and ER15 |wor Filier kathe: forc, iat and C92, and ore resistor. K24. These

couid be: found and the tecuble preven in to in the resel surcuit.

There the resel rimoln: is thatked wht as whiss then the next stepy is to check the clowht unpuis. At

 posed to be fresent. The bope probe will shary both
 rmisung, then that will Explaim whin the pallos ate

thoulthe two abock be present and one or
 the poocesoor whibiting that behavine it defective.
 genergting the proper purlcing on the bus pinis. The triculule is, mast protably, a defoct in the MPIT interral nirituitu

 cated to bee in the circtilla 扎et wie produming the

 cloces in the G12B. Mibsing clock signmils indticate chock civait krowbes (fovered in clapher 17).

The rest af the ping ot the toll dre waicus frome of coptertis. The Tiget Point Churt. Figy- 134.
 whethia the pins are reperving an input frovin thex

 firsd a wrong input rieading then the 280 is probitity
 in the cinctits that गecejed toe input. Shoulid there be a prong matpat reading- then the 200 hes a de-
 toplanement.

14．Programmed Logic Array

U

 pinced right in tbe mixale of the atdrexs lawa chatits． It urorks in coorthratiso will the MMEN，L＇T；which is covered in the mext chajter．U11 is called is for

 is plecent onta the Clups printboard，ready to worle．骂数 the ROMs are

 so it can also handre sume of the C125 newth．When
 worte side by eide．When the Cl28：is in the Glit mode，thotula the PLA drees the job withwal the

PLA INTERNALS

The：PLH is a chip Ectectrt．Tr allug perforims
 ter．As the neme suggeats，the PLh wiores by the mangulation of logie，A HLA is composed of com－

 and the VR gates iveliage the chie outpota．

The AND gates al the chip ingut pins teceive a lat af contral signals tale the most importane in puts afe frum the addews bus．The Prak is con－ nected to lines M15－A10．Thesic are the siox hiphest
部 able to problume lot of dutputs．

The AN1l gates begin the decerding Ebal will re－

 Ine P:A in thn C12A operalas tes is cacoder anve jeoduces thip serecks and olties signals

 mombunation lou-k. It opery

 stre lyigi.

 is featile.

 and only nupur the itesived sigual wo the OR pates. The UR pates gre thett illte to culput the carrect thip select signill from the ditsinnated pin,

The Chip splectr

 shand in Fig. 14-1- Fome confrol lines and there wd
 setect. The four cortral Enes are Bib, LORAht. thath and lathen

 sudes being insirned intu the P'LA LOERAM IGw:

There inpul sipsads wurk their way throuph the

 puta and pasithe cultputs. The chip seleated is frua
 นะํํ․

Whenm abt mode cartrintge is inserted, the computer deleds it and brophas into phay than lione

FLA mputs. They are "Exroh lextertiol ROM)

 these itpulk

The C64 memery map is al duubledech sthir. shown int lig. 14-3. The button dect is 64 F byter Irmg unal Ls made wip of uight 61E4 DRAM5. The

 of Memany-

 Thented to pack and match diflerent melaury lapp laycotis lit ywious pas.

Pesides the dughte deching of B5 Fh, lite tilem-
 exterall dewices such as the turlidgr Roms. They gain whrace by beimig phaped lito eatridge hoder and activating + EXROM and FGAME.
 14-5. It comes up when yrut stant the Cl2as in C6d mode, Sever pther riapa are arankble, tuesides that
 GHME ind EXROMA, whith change the anragement of Ibe chipgs that wind rexide in the ney. Beader that,

 and other desale will tex ctovered tn chapter 16.

In the cled morde. the FLA ailor plays an mart in the chip select prokerss. It selencis the ROM, Is gelents the VTC chip. collor RAM albd charater FOM. It aleo selents the waikne LOs. tivadimp the

 that.

PLA Additionsa Functions

Fug. 14s Thas 64k memary mat is pertitioneo off into 256 pages aach comaining 258 bytes.
fion, the eCAS (culumen address strube) is for IRAMs, and Cl.RBANK is for the color RAM.

There is -llWfi from pan $\$ 0$ that is the write enable strobe for the DHAMs, and ${ }^{\text {GWE }}$ from pien 44 that goes io U55 (a fip-flop) and then bexomess the write enable for the cutor RAM

The Pl.A sends the 780 signats to turn it on and io handic the 280^{\prime} s I/O and memwory mapping. Pial 13, -BUSACK, is the bit that turns on the 280. Pin 14. Z80 I/O, gues to pin 20 of the 280 to get the IHO data moning.

The Ri-W signal from the 8502 srrives at pin 10 of the YLA. The PLA then taltes care of the darections in which the hits on the data bus will be ravoltig

Besides all these jobs, the PLA, cluring the C128 mode, also makea use of the C6i4 signals: LORAM. HIKAM and CHAREN. These thes in C6A mode are part of the banking scheme. The C64 mode can onsly utiuze 51 K at a tame. Yet 85 K is available between all the chips used for C64. The mentioned control imes and in banking the chrps into coght different oonfiguratunss for the C64 to use. They are not needed for bankung in the C128 mode. The MM1I parforms the C128 bankinR duties.

This PLA is able to change the job of these three ines and make good use of them when Cla 28 is in action. The CIIAREN inpus frum the 8502 is then used in turn the character $\mathrm{k}(\mathrm{MM}$ ofly and on in the

fisg 145. The C5A mode memory ootsult nep, the owe ithen comes on when you switch on C64, has tho following reci. dente: $40 K$ OI RAM, the BASIC ROM, Dno Karnvel ROM and tha 1 O grova.

VIC bank that is selected. CHAREN makes the charscter \mathbb{R}) M readily available in any VIC bank. LORAM and IURAM irputs are used to select one of the two sections of the color RAM. Specifcally, LORAM inpus causes the P1/A to select one of the twon KAM sextims when the 8502 is in comtrol. HIKAM input causes the PLA to select one of the iwo RAM sections while the VIC is in charge of operations. This makes the culor displays operate cleanly. It is a veduable feature for programusers and users.

PLA PINOUT

Pisure 14.6 is the Test Point Chart for the 8721 Pl.A chup. Poss i-f are the address tmes Al5-Au). If you louschutown un them with the loyec probe, then lley will all show acturnty as the prohe reads Pllait'. What fou are secing is the current address bitw arbiviags in step with the clock:

Pin ?. called VICFLX, is ure being used at present. It is connected to kromed and the probe will read - LOW. Pin 8, DMALACK for derect momon access colknowlodsev, is not being used either. It is tued so \& 5 volts tes kecp it enat of action. The probee wid read a high.

Pin 9 is AEC coming from VIC. ARC lets the
 has comtrol. It probes PILSE while the C128 is iodling Pis 10 is the $\mathrm{R} / 0$ W line from the 85102. It hets :lye PLA know which disection the hits on the data kus shoukd be traveling. Pin 10) storwer PILSE.

Pins 11 and 12 are e(isME and EEXROM. They are comusy from the experasion bus. When a cartridge is in the expansion port, thene sigzals become active and can affect mesnery truas. They buth probe IllGHs when there is nothing in the expansion port.

Pins 13 and 14 are - 280 ENABLE and Zowl 10 They cach shuw PULSE. The enable is a bit from the 280. When the hit is bigh the 280 is in charge. When the bit guees low, the PLA knows that the '/8:0 is now snstating and has grven up control. The ZxM 1/() ts a sigmad from the Phat tu the 780. It is an inlemrupt that the $\mathbf{Z}(\mathbb{O}$) might or meight not honor.

Pis 15 shows tixe omparter's made. If the probe reads HIGII then the matlisue is in Cl28. In C6A track the pist probes a LOW. Mas 15, 16, 17 and 18 all comect directly to MMU pins. Sixteen, a LOW, is an If() select that reads Iow. Yins 17 and 18. PCLSES, are R(DM BANK HI and RO)M BANK Le). These four pixs 15-18 are the murde status lines. In the C128 soode, berween the address bits and tione foar linc\%, tbe C12s barkinys anrangenens are miade.

Fing iy and col two unure Plises, are two vic Iddreas bus linner which ate moultiplexed into pirss called MAs and MA5. These special address lines
heip the PLAA when the 8 srul2 wants to arress VIC of if VIC wants lo acceess the DRAMs. Pios 21 is the HA signal from VIC. If showe a H!LSEL. Pans 2E, 23 and 25 ure LORHW, 881Rilh axd CHAREN fruen the NSkK2. Pins 2" and 23 are \#Illills and 25 造 a LOW. Pin ? 4 is alsu a loow henatse of is the chup's (iNl) remnection.

T'as 26 is a bukher under VIC address lime but comest from Claz. It prober a IICCII. Pin 27 has a jurnper in its inpur linke. It sets the fPI.A for use of 125 K or 256 K R.LM. The jumper is open whinch sela for 12 RK K. AM. The tane is held IIICII. Pias 28 and 29 are not coumected. Pin 28 will not show any logar probe readinge. Fon 29 will read PC:LSE Grominternal commections.

Pins 30, 31, 32 and 3×3 are four ITIGI]s showisk the siunals for ROM D. KOM H. CLKBSNK asd FKOM1. Pias 34, 35, 36 and 37 are the chijg seber: pinse for ROMA, ROM3, ROME2 and ROM1. Thes are all PULSEE except 37 which is HICH.

Pin 38 bs an (M) chap schect that is comeng frusen the L'3 decoder. Te reads PUILSE. Pin 39 is not conmocied but will read a putsc as sispuls spill ower insude the Pla and make jt to the pin. The YULLEE las no practixal meanung. Pin 40 as the - DWE our put. a write enalue to the IBRAMA. Min 41 is a PUL.SF: that goos to a pair of NAND gates in U9. The pin is called oc:ASFNils for colums address strobe enable B. Aece prissage throught the swe
 two sigprals are NANUed akan and are then applied to the rwo hanks of RAM as -RLMCASO and - RAMCAS1. Eadr wrehes its respectrve RAM hanks for the column addresses.

Piry 42 is the -vTC rhip select. It reads a PliLsito. Pin 13 w the -LO ACC and in applied to VIC asy PRLSE. Another Mlitsite from pin 44. - CWE. is the write enable that ends up at the exalor RAM. Pin 45 ouspur, another PIILSE. is the -COLOR RAM cliz selecs. Pin 46, stily another PUISE: (cabend -c'tLAR ROM), is the chip sefect fors the character ROM.

Find7. FCAS, is the compancun PULSE, that is NANTDed with GCASB and ricASl gates to ferm RAMCASO and RAMCASI, which are apolied to

 for lime mall

RAM banks 0 and 1. Pis \&8 stiows a HICH. It is the +5 volt power inpus pan.

To sum up, the 48 -pin Progeramuned Logeic Asray is the ondy large cliip in the Clizs that camnol be programmed. It has alresty been buik with a mas: sive swithing program installed. It recelves inguts from adiress lines, cuntrol lisees from the 8502, the expansion port, VIC, CIA2 and a few other places. If interprets these lines and then outpuls dip selects
and other decoded sienals.
The PLA provides all the chup salects and other nemessingy signals for the C64 maske. For the C124 mode it dones a hot, but not everythng. The MMU does most of the interpreting fer the C128 mode usmg the Pl.A as a helpmate. The next chaples un the MMU Roes into more detail on how the PLA uperates with the MMU.

15. Memory Management Unit

TWhe enst chaipler shuwed brix thla romputer in C6d mode cyes the: PLA and its manal siparals

In the CEX mode and the machithe lagguge

 frand land 40 bratr.

 ximad 15

Tahte $15-1$ chow the arranpmonent of the bianks.

 ing 256 Ek af traty Yes" Howewer, there ig only
 it thes shat will allow mporutes of tha cless in the tu-

Anywiyy lute play with the Clata for the prestonl. The arditienala 128 FK dhat can be todderessed

 luank 2: Friu urill be addressing bark 1.

BANK CONTENTS

Tadte $15-2$ is a listing of what foptre of mextory
 hex. The batks adre ournbered 0-15; in decinal and

Toble 15-1. In tha C128 mode, the wau can get the computer to operate with 16 different mensory map liyouts. In BASIC tho banke ara called out uning dacimal numbers. In the Machine Language Monisor sha binke nete nexadecimol to mopear

Bark Number		Bank Corients
Decime	Hex	
$\begin{gathered} 0 \\ 0 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 40 \\ 71 \\ \because \\ \hline 3 \\ 74 \\ 3 \end{gathered}$	$\begin{aligned} & i \\ & i \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 6 \\ & 6 \\ & A \\ & 4 \\ & 6 \\ & 0 \\ & 5 \\ & F \end{aligned}$	PAN SMO RRY Se: 1 FhU Se: 2 : :101 m C\{28, uses RAM Set 0\} Fintl Sel 3 : rlu in C 128 , uass RAM Set i) RAM Sn: U, 10 Functiond ROM (emply sockels RAy $\operatorname{Hin} 1$, D) Functana: AOM (empty socker; Rase Sel 2. DD. Functures ROM (erapty socken) fiav Sei 3. O. Furstimes ROM (amply socknt) fiev sel o. il. Cantidpe rom fith Sey 1, NO. Cartroge 70 M R\&N Sirt 2 , CO. Cammpe HOM FAN Gmel 3, CI. Cartridue gola Rhy tee 0. Kernel RCid. BASIC HTM Characre 9 OH RAKX SAI U. VO. KHTEI ROM. BASX RROM

Table 15-2 Thers are fountem poselble residents she MMU can pick and choose Irom. PaM seta 2 and 3 are not in the machime. If you choose them, men pam nefs it and i will awitch in instead.

Bank Appldent	Addrusees	
Type of Memory	Decimal	Hex
Hiam Sim 0 RAM Seil RA.V firt 2 (same as 0) RAM Son 3 (sam 堽 i) $\left\{\begin{array}{l}\text { Functionnal 9OM U3E } \\ \text { Fupel ond: } 70 \text {) }\end{array}\right.$ 1, Cambog RCM $\left\{\begin{array}{l}\text { Kerne FiClol } \\ \text { Kime Es:lps }\end{array}\right.$ EABTC 50\% Characte AOM $\left\{\begin{array}{l}\text { Momary Mana;amam Unut } \\ \text { Momon Manacoment Unit }\end{array}\right.$	0. 25.535 C-85.535 32,36753,247 57,312-65,535 51.244-38.343 30.7 5 ²-50,247 49.152.53.247 57.344-85.535 15.384-49.151 53.248-57.34. 6 5 282-65 284 5- : \%	SOWO-SFFFF S000C.SFFFF \$11.(4) SFFFF SOCOM-SFRFF \$सDOCI SCFTI ss:90.sFFFF SGOSOSCFFF sterastatt swaco sbrrt sinoca-surfr $58+30$ SF $5-104$ 30.5030503

in BASIC and the bee is used when lestione in the Monitor. Note that addresses start with zero in decmal and \$MMOO in hex. The \$ sugn mears hex. Eisth bank ends up with 65.535 in decomal and SFFFir' in ber. The banks are 6sk sepmentr.

The first fousr banks 0-3, to Tahle 15-1, are all RAM except for some control addresses that are needed. The Mennory Manugement lluin is mrolved wath every bank. The MMLI has addresmes Eisusp), fi5s81. 65282.652×3 and 65284 . These addresses
mevery bank are yeserved for the MME: Futhermore, every bank starts off its bayour with sonse RA.M from the $64 \mathrm{~K}^{\circ}$ bkx'k 0. The armounts of RAM from thes group of chips varies. Banks 1, 2, 3, 5, 6. $\overline{7}, 9,10$ and 11 use 1024 bytes from RAM block n. Banks 4, 8, 12 and 13 use 32768 bytes of block 0 . Baulks 14 and 15 use 16384 bytes of 0 RAM.

The MMU! registers appear in every hark for the C128 to be alble $\$ 0$ switch from bank to barts so pandy- If the MMiU reqsaterg did not have resudency in every bank, then uace you got intua bank there would be no wriy out. Chapter if has more delails abuut this.

Lurung power up. the ROMs plooc copries of the inytructions to batadie IRQS. NMIs and resets intu sectuans of the KAM that will be used. That way, even if you are in a bamk that dees net incturke the R(1Ms, when these interrupts happen, the proxtam wan't consh the inkemupr will be serviced properly.

Basks 4-7 are there to work with the esmpt RO)M socker, called U36. The barks have various amounts of RAM trom blocks 0 (1-3 in the buttom 3 HK of the 64 K buak. In the tup 32 K of these banks, the functiona: KOM. Ulus, st inswalled. It resides at nddresses 327 Fix -52247 and 57.44-6iösin. There are. ROM chips appearing on the markel, tike the Superchip mentioned earlier. If you glug nne of these internal function ROMs intss sockel U36. you can then use banks 4-7. Cherwise you have no need for these barats.

Banks 8-11 are bice the 1-7 banks except that chey hanulle a C128 External Function Cartadpe R()M. The cartridge ROM phugs into the expansion port. The ROMs use the same addresses as the In iemal Function ROMb, even though they are not playsically in the same place. There is 00 conflict even through they use the same addreases because the ditferesce in bank mumbers keep them separate. There is alsu no comslbet with C64 cartivilses becansse the machine can only come on in Cas mode when such a cantridge is in the exparsiva port.

Hank 12 also es only used when an internal functinn KO$) \mathrm{M}$ is plagged into the I 136 socket. The Kerrel ROM is incluxhed in this buakk, however. Bank 13 fias the same contiguration except that in deals with the external furntion ROM in the expansion purt.

Ranks 14 and 15 are the ones that wafe often used. Beth contain RAM from the U block at locatwons ©1-16i3s3. The BASIC 7.0 KOM 5 in both as odulreaser 16u4-49151. The Kemel ROM is in buth banks at 49152-53247.

In bark 14 at $5.5248-57343$ is the Charucter ROM, At these same addrexser in bank 15 is the $1 / 0$ system. spund, wideo and onher liO chigs. The Kernel ROM also has addresses at $57344-65535$ in both hanks 14 and 15.

Rememberng all the contents of the 16 banks can be broken down into two gruups. One group has the banks used without the internal and extessual function ROMs. Banks 14 arnd 15 are the ones with all the ROMS and IIO. Banks () and 1 are the banks with practically al RaM. Banks 2 and 3 are jusi Dopies $u(0)$ and 1 . As long as you do ant use a functional R()M clup in 1336 or pluge a C128 cartridere in the expansixm port. just inform ynurself on these banks.

When you surn on the mactirse in C 128 mode yors corse up in bank 1\%. For routune BASIC 7.0 programming, you wiw work in bunk 15 rnost of the time. The BASiC commands though are simply slortcuts that in turn are interpreted and call out machine lasguage pmgrams that are the actual conguting. The BA.SIC commands then cause the maxthine to switch from bank to bank as the program tines are executed. After the lines art rum off, the trazthine returns to bask 15. unless yous issue BANK command.

In the Monitor though, the rubes are changed. When you enter the monism, bank 0 is automaticady hrouseht ons, biunk 0 is mustly RAM. If you try to go directly to bank 15 to aronse R ()M routines, it wur't work. In under to swilct banks you mant write to the MMs!!. This wull he discussed hater in this drupler.

MMU Registers

Two sets of registers are in the MMC\}, The five repisters mentioned earbies appear in all 16 banks
 bad conroxueation rewisters (A, B , C and D), and the main conkywation regrster. Theae registers ane int

 [0. systemindroesses in bark 15 tif the bank whour be changed, ther this group of MMLI registery will

 are iil eifery biank

 gitalp, wh the connguraioun regoster, be CR

Fin Bhice all of thege registars are woligmed antomaticaly' by ther rutunes in the ROMS: In mat chise leng dage thoulth, the prowamumer ment con-

 regislens, one modle matigurativa regisery onde

 la different wettions of the isR Let's gee pxatly what that memens.

Setting the c:

 from black 1 .

 bur :at tifa Bantliitu.
 . in the liank you ase ging bo worts ing.

 thine for any enterne function tizt molvithat might

Hur pusition 1 sman.

 SIC ROM lapr for the lamk. If a 1 if metriled in bit

 If a 1 is pheed in the regegter bit. then the Cbaraz-
 chiosth.

 the hermel becomers a mesnber of the triall. Pusi-

 L4. to tee smen by che (5in)?

Fug. 15-2. The programer can condiguse eve sets of hits sy wrang to the cha
seept for bit posititm 0. In bant 25, postrion 0 is 0. That makes the CR byte (HOMOUCKIC. The unly differeruce between bank 14 and 15 is hanit 15 chonses the WO system on the memery map and bank 14 chooses the Character R(MM instead.

The CKK is found with two addresses: nne is at 54528 and the wher' at 65240 . The register at 65280 is accessihbe to the 8502 mo matter what hamk is bemg used. The focation at 5iti28 is mot always aval]. able in some banks. That is why the C C is given two addresses. Withont access tos the CR you can is aiways switch froten bank to bank.

Setting the Preconfiguration Rogisters

It is easy in Basicic to switch from hank in hanle. You simply iswert a program line like:

220 Rank 14
inte the BASIC program. The Brote is then instructed by the BASIC ROM to place banary hits ormyonal into the configuratoma regester.
is maxhuxe langluge it takes a little more work. You have io perform a write uperation and install the bits in the CR. That isn't 100 difficuls either. Then there are ways to chrage barks by usong thes registers in the MMU. This becomes valuable in the proprammer. It could be useful to a troubleshouter who wants los exercise she MsMI so see if it is perforsuing property.

In the set of MMU registers at $54528-54539$ there are fur preconfiguration segisters as shown in Fild. 15-1. These are lonown as PC.Rs. In the grupu of MMU registers at 65280-652R4, there are four corresponding regrsters calked load configuration registers, DCRr. The PCRs and LCRs are cach called A, B, C and D respectively. The A's are a
 Wach puir trinether cian to preset lo change the set

 ger The LCR tea malke the PGR place tio contentls filu the Cll anid athes suiteb tanfis.

It works like the followiugy th the wegirniug of a program pcel cian sleme up tor four bank changex in the ICFEs Then at appopriate places in the programe there will lie STORE instructious the the propitate LCRs. It shonid be nored that the PCR R
 It inesanl'I ifratice thangh because the LCRs are al-
 is write a STOHE and it win tringer ils commanion PGR even theugh the 4500 wan'tacerag the PGR. Tlie LCR wan ed ways gee through. Inciderlally, the STORE igatrue tion the the LCR can tare suly walle attached, II is the çorle instrumtion that is the arigger, wot the wata contentis of the prograus lune, Whell the STORFs. inatra-tion is exeruted to the LCR tha PCR is triy. gered nod reslaces she combents of the CR , with the

 fion rexkister.
 and LCRs. 14 yean are kexus Bhicc, then you are
 Eht ister contenta biens Elisict exall become wery con-
 crand.
 their contentar in mathine langusk-

Intapecting the MMU Reglitiers

Berause the MMII fas 17 recgisters with ad
 they are actige shomully. The easiest way to look dwer the registers is with the Manitor. for porferse

can take ine with trat eququmat the the logic probe asut wom.

The MMU register inspection begins by enterong the Monitar. When yrat enter, eilluer by ponn
 5imbor

*ONITOA

$$
\begin{aligned}
& \text { PE SA AC XR YT SP }
\end{aligned}
$$

 frimernmale regigters. The contents of the PC are Sturn 35. FHow, Betrise each bex nonner
 be 20 bits. 'There atte only 15 wits in the program counter. The F is soo so the FE . It shuwts what back

 they shineld

 Herking fime. All the cifaxila that gre instrubatal

 indizate tomblen.

Getting back to the MMC pegivers: the Moni. tur has trog commands that are willuiblde for troubleatheting. One is M for Hembry- M is some-

 play' Ulixie iddresses laclueled from the start to the cond for exampe, it you coter M FDFMO FDiols, then your will disptay:

$$
\begin{aligned}
& \geqslant \text { F0500 00 3F 7F } 0141 \text { 日 } 70400 \\
& 3 \text { Fign Fo til FD 20 FF FF FF FF }
\end{aligned}
$$

What dresh all that menn? You tave jurt chas played lise contenta of biulk 15. beationst DEm

Morvitor starts cach line with the first address shown, and from then in in multiples of cight. Nate that the first lime is address D5uli and the second inc begins with binht.

The four preconfygration segisters are in thas froup of MMU registerc: The PCRs will ahways display the same contents as their respective L.CRs have. You'll see that when you dasplay the set of repassers sext that contain the LCRs.

If yous are wondering what those symbuls are on the rizht of each line: they are the AsCll characfers corresponcting to the eight memory focations on the line.

Once you bave examined the tweive MML rematers in that Rroup, then you can lowk al the remaining five in the other group. Ester:

M FFCO FFOA

When you press RETURN the display will show:

\therefore OFF00 3F 3F TF 014178488 A

The display shnws MMU registers, FPOLAFFO4. plus the contents of repisters Fif(k). FFO6 and PF07. Mhes the hex nontents are the AS. Cll symbuts that are calbed by the contents of the eight registers. When this display comes up, these MMU regiaters are indicated to be okay and operating normatly, Note the 0 in frome of the address that appears. That shows the bark that the monitos is using at this time. It is bank 0 whicts iis roustly RLM except for the upper MM11 repster and some comurol signals.

The other Monisor command that lets yous in spect the MAll regirters is D. It is the disassemWhe command and is used hy the programmer to list progransm in memory. It can be used to inspant the MMI? registers. Just enter the first address of the proup of registers:

D D500

The sisplay will bring up a page of mernory-in this case addresspes D50(0)-D5I4. The cuntenta of
these addresses will be show The cuntents atre listed verti-ally alongesule the addrens. If you enter:

D FFOC

then the sarne type (ff dispilay win he shmwin. ()ther Information is in the thisplay' 100 . For example. the period at the beganing denotes the disassembly. The () in fromt of the bex atuleresses is again the hank number. There are also marhunc language symbols present. This is disassembly information, not necessarily havng anythiag to do with the onspection leat of the MMSI rekisters.

MODE CONFIGURATION REGISTER

Address D505 is the MCK (see Fig. 15-3). It makerfing vital decisions. First it decides which processor should be in charge, the प्\$40te or the Z80. Secondly. if the 8502 is th charge, theo it decides what aroule stinxid he used: C12is ur C64. The MCR makes these decisions by the rype of bits that are installed in the register. Fach bis activates a particubar set of circusts in the MMTI that swisches in the desared processur and the mode of the 8502. If CP:M is to be used, then the "88() will be given conitrul.

His pesition 0 chuoses the prnopswar. If the pow sitiom las a O then the 72M will be in charge. Should a I be maced in that pusition, then the ssolu wial get the coutruls. When the C12S is first powered up. the bit prosition is at 0 . This lets the $2 x \mathrm{~g}$ get Use monfor started and the machine invialized. As axmo as the $\mathbf{2 n o}$ does ils work, the position state is chanmed su aland the R5OL taikes uver

Should a CPMM disk be to the disk drive. the bit remains at the 0 state and the ZMO netains enomtrut of the computes. The $\mathbf{Z k i}$ then krads the disk contents into memory and the somputer is ready it be prussamened as a 880 ourmputer on be keded with CPiM programs to do sume usetul work. The CP:M uperating system sertons in ROM are avcessed.

Brts 1 and '2 on the MCR are not used. They are there as extra tapacity. In the future they tuuld be used in case addumalal modes are installed in the emmputer systern. If you recall. the MMU is alsi

 mode should bo usert: C64 or C12d
able 10 address another 123 K nt RAM if RAM blowks 2 and 3 are ever installed in addition to the present KAM blocks () and 1. Bsts 1 and 2 of the MCR are also addaionai power the MMU can laring tu bear ir ever desired.

Hot 3 部 sf FAST seral input and output contrul. IS $i t$ is a 0 Uhea it ects an inquat for FAST serial mput from the disk drive. If set all \downarrow it causex an outpul operatiun from the serial bus butter. In the present day $\mathrm{Cl2b}$, it in not used as an input.

Bits 4 and 5 are the *GABE and -EXROM senwe lxils. When a cartudge is in the expanmina port these lumes sense at and force the Ci28 inno a C64 mode. The cartridge then lakes peer control and runs the compurer.

The C69 cartndge will make one of the "GAMP or "EXROM lines gol kow. When that hapoens either bit 4 or 5 will have an 0 statc and the C6A mode will be actuated. 4 ac128 cartridge is in the expansion pont, then these I wu tines will not be affected and both bits 1 and 5 will have 1 . The computer will sray in CI28 nurbe.

Bir 6 alsu is a C64,C128 mode setter. It selects the operating ssstem. If the bit is low then all of the. MMU registers are lumed on and the machune poes min Cl28 mode. Should the bit go trigh, then the C64 mode talser over.

Bit 7 is affected by the ups of down pasition of the 40,80 IDISPLAAY key. When the key is in the up purition, bit 7 is hold hagh and the computer will display 40 columns. The vibeo cutput will exit from the. KF Modulator or the composite sideo porr. Should the key be pressed into the down peritions. theo bit i gues low and the computer will output whemoman video from the $\mathbf{R i} ; \mathrm{H}$) output porn.

The contents of the mode configarration regisler can be mapected quakly by entering the Monttor and iypinte M FD505. A digsklay will appear showing i\& registers from D505 Un. Ignore them all except for D505. Upon start up it will read bex R7. Translated to binary $\mathrm{B7}$ is 10110111. Counting from the lett, the hit positrons are 7, 6, 5, 4, 3, 2, 1 .

Rat position 7 has a 8. That selects the 40 culumo desplay sutput. Kit positions 6 hatso a 0 . That
purs the mode into C128. Bit possitions 5 arnd 4 are both higbs. That says there are no Coid cantridges in place and the C128 mode hoids incact.

Bit posituon ${ }^{\prime}$ ' is a 0. No input is in this machize so ignore it. Bits 1 and 2 are held high but thes are unused and to be ignored too. Bit () is a high. That means the 8 Hote is the chicsen processor. That is how the MCR curtiucsy its business an the C128 first comes on pormatly

RAM CONFIGURATION REGISTER

The hex adtrens of the RCR is D505. The KCR controls the amuunt of common K.AM that is shared between the two fork blocks, 0 and 1. It alan de-
cides how the common RMN is so be shared. Iatstly it designates the RAM bicck that the VTC cian use.

Figure 15-4 shows the four ways that the shared RAM is assigned. There can he 1 K .4 K , aK or 16 K amoumts shared. Bits 0 and 1 of the $\mathrm{KC} \cdot \mathrm{CR}$, dectate. the ampunt of RAM that is to be sthared. There are four possible combintiuns of the two bits.

Figure 15-5 shows the amounts of shared RAM in accordance with the states in the bit pusitions. In Fir. 15-5 the lit posstions 2 and 3 show where the shared RuM is to be placed. Bits 4 and 5 are unused and reserved for future use. This is another example of the power thas MML: has and indrates future potential of C128 computers.

 blocks 0 and 1.

RAM CONFIGURATION REGISTER

5uatoen 1s FiAld 4n, vir.
Bañk :
-6arnk -

Sertinns of HARE ic ' 	Amounts of shared HAR on banks
11 , F.A)A tatik. 0	nk^{1}
1 ing nl RAM sare 0	15
Tiph Exitam RABA $\mathbf{~ 2 l o : - 0}$: 6 K

Hit 6 derides which one of the two RAM hanks VIC is assigned to. Bit 7 is umsed and adme avalable for future use. If bit 6 is a low then RAM baruk 0 will be uned by WIC. A htgh in but 6 assigna VIC. in hand 1.

If you check the RCR contenes by typeng M FDSO6, then you'll read hex 0 M . Decimal of is blnary 01000100 . Bit positiuns are counted from left 10 nighr, 7-0. Bit posstrm 7 and 6 are both 0's. Bit 7 is ignored and 40 in 6 assigus VIC to RaM banls 0. Ditas 5 and 1 are also ignored. Buts 3 and 2 are O and I whits places the shared RUM al the buttom of bank 1). Brts 0 and I are binary (K) wherch phaces the ameuint of shared RAM so be used at 1 R . This
is the arramement set up at power-up in C:128 mode.

THE PAGE POINTERS

Upon system start up in C128 monde, enter the Monitor and type M FDS07 FD50A. A line of cight hex conteats starting at [150)? will appear. The F in the hex address shows that bank 15 is the une displayed. The lirst fexer hex pairs ase the motents of the page puinter regsters. The other four hex pairs are the verwom register (discussed mext), and three neernury registers in the I.() sectunn of bank 15. This group of MML! rexisters is located in the I/O sectiurs.

 prese and the Teat Pbint Crant muen be used

Nuw it wurd about pages. 64 K of nemory. specifxally 65536 bytes. is composed of 256 pages of 256 bytes. Each pape is compnsed of 16 ceroups of 16 bytes. Each page is numbered in hex. (rom 00 is FF. In the C1I28 pares 0 and 1 are numbered (N)-F7 and $10 \mathrm{n}-1 \mathrm{FF}$. Each subsequent 256 byte page is aumbered consecutively, in hex, till the last page of the $6-1 \mathrm{~h}$ is FFOU-FFFF.

The page pointers deal with pages 0 and 1. These are important pages. Page 0 ins used by the s.iti? because a los of the instructions it works with are m thes page. Page 1 is also vital because is is the C128 stack. That is where the 8502 stores its regrater contents during interrupts and sonve Jump mistrucrians.

The page pomters are able to change the prage number of 0 and I and relocate these pages some-
 Whest a rekcation of pare 0 is performed, will then contair the starting address of the new page mumber. Regrseers at D509 and D50A. when a reiocation of page 1 is performed, will then contain the starting iddress of the rew phegr number. Addresses 1)507 and L1509 will hald the low bytes of the new addresses and 15508 and 1550A will contam the high bytes.

At start-up in the C128, the M cormmand in machine language will show that the four bytes, D507 through D50A, will be (0) FO 01 and FO. These hex vahes in hinary are:

((xxummen
1	
$0!$	(\%,muma!
Fil	11:

The page pointers give the tmachine language programmer a lat of versatibty. For tmulleshoosang. all that is nourmally needed is the alvility to read :he regnier contents and then compare them to what is suppersed to be there at that time. As long ins the abowe values ate present. fle repisters can then be forgoten about. Should an incorrect ratue be presens. that could be a ctue that indicates trou. Bie in the ctap. Thas goes for all the MML' regasters.

version register

A address D 50 B is the version register. The cuntents of that register in my Ci 28 , at system start up in C128 mude, is hex 20. In binary, that converts
 that describes the modet of the MML: and wiat and how murh KAM is in the mactuine. It is surt of an electrunic aame plate. casdy changed.

Bits 74 contain the code in bits of how much memnry in present. The bits 0010 mean that there are (wu banks of 64K R.M. Bits 3-1) contain the 31 Ml ; modei marnber or version. The 0000 is the model MMU I have. This register is a signpost for a programmer to know whas type of systems be is dealing with in case there are rome compatibitity problems. Computer syssems are always heing up-
 be buitt in This register could be belptul in those cases.

YHE MMU PINOUT

When the C128 has troubles but is still operating, the MMII oan be checiked (xat by displaying tite register contents and comparing them in the conteants that sbould be there. IT the C128 can't dispityy the repister contents, then the only recourse io test the MMII is with the Gagir probe and wom, using Fig. 15-6. The pin statess can then be compared with the sates shown in the Trest Poiat Chart. If any dins do not match up, then that could be a clue to the trouble.

The Jobs of the MMU

Thee MMU is conameted to the entire address bus, Al5-A0. Internally, it takes these incoming hits and translates them into eivht translated address lines. TAls-TAR as shown in fig. 15-7. The MMU? then seads these eitht bits and they are used to do other addressing. The TA15-TAl times are discussed in detail in Chapter 18.

The MMU is deeply involved in controlling the three processor modes. C128, Cis and 780. At pin 17 is an cutput called 128i64. It is a jovent outpur with pin 15 of the PLAA. It goes to the character R()M so choose the character set acenrding in the mode.

 Way so the 780 and lurns it un and nexi. It hass alneads been showth how the minde conniguration register truiruls the chowice of muste.

The MMU! gesperates seleet tirnes fir CAS. These suuputis are found leaving pans 12 and 11. Other shyrats surt as those to chowse the ROMBANK exit purse 14 and 15 , whach go direct to pmons 17 and 18 of the PR.A. The C128 wentat non be a C128 without the MMI! providgg an the impontans coinforl and select measures.

Inpur Signal

Pay $18-21$ are the inputa for address tines s(a-A3. The brop probe shows themas pulses. They along with pins 24-31, Al-A15, also ain pulsins, are the remanumg direet addeess filv from the processurs. Twu addreess bits. A1 and $A 5$, are unpur at pin 2\%. As pun 2.3 are two more: Af and A7. These vins show polles tuo. They are connbined simpiy to reduce the MMII pin coumt.

These swo vombineti address brts are passed through two OR gates between the bus and the pisis. With the use of an OR gate yuts can combine torn sigmals and save pins and wisugs.

AFCC, the address enathe controu from VIC, is mproxt at pian 16. It shoukt probe a puise. When AEC is trigh the REM2 is given charke of the shared bus. If AEC' is fow then VIC takes charge of the toes.

Yno ite if an mput from the 8502. It is the systetr seadiwnite linse. It shows a pulse when ukay. When the Ri-W bune is high then the stith is errdering a read operaticn. A bow means that the Rent? warts to chaviuct a write.

At pan at there skxubl the asmither pultie. It is
 ifix is triggered on the rising edge and data mavemens is ingkered on the falling edge. More on the generason and use of thus xignal is spyen in Chupter 17.

Hin'2 as the \cdot RESET ingus, Whata aluw entera bere, ass the marhune is surned in or afer the reset butcos has been pressed, the intermal MMM registerss are all started and untialuexi. Pin 2 is nor-
maty beld higtin ofll RESET, a low, arrives. Pin 2 will probe a high during lest stand by conditions.

Pin 17 is another pulse. It is MLX. the memury muttiplex sigmax. It is anuther cluck-位e mput thas is comuthe frum VIC.

The nther two mputs it the MML are +5 sotis de from the power surpaly into pan $\mathrm{I}, \mathrm{V}_{\mathrm{n}}$ and
 pin 3 a kur.

Input/Outputs

Elecause the MM!? can be proverammed by the
 bus. Do-1n7 are connected to pins $35-42$. They shuruld all probe pulses. The prucessar uses them aimust exchasively to write to the MMU. Yos can. howeres, also rend from the M.MIT with these data limes. Tlus is very landy during prompanuming and testrng. Lmes =CAME and oExroM are at pins 45 and 16. They should both probe high during test time. They are sensing tenes in derect a CBs or Ci28 cartnder in the expansion bus. When a cartortigr is in the expansoon part these tmes will RU kow in accorrdanere with the cartridge present.

Pin 48 is the 40 isu columan control. It will arobe a pulke. Wher the $40 ; 80$ key is pressed the tme will tell the MMUU what culuman should be fisplayen ax. cording to whether the key' is lixed up or down. As a 40): 8) desectur. it is an mpur. These is mo untuut tunctom assugsed of the circtuit, Ita the furure the outpus shlitiry could be utilized.

The - FSDIIf pin 44 as used to control the direcuon in which data will fow in the fast scral daskix interface. It will probe a how under sest cunditmans.

Output Signals

With all thuse inputs and lifs sapnals flowing un she MMMU, a eruw of cutpues are Renerated. Mruuet: a wrong mput dnesn'f usually nuesse the Minll is delective, a wrosy uutput uxualify does.

The skgnalf TAlfr TAK exis at pins 3-10. They shoukd all test an pulses: If all the rost of the puns best okay and one or mare of sheye pans are not pulacs, then shances are gend thall ciou must ithangre

MULTIPLEX CHIPS

 addreesing of the DRAMs.

 chatroter ROM A lowe when WIC Le in charege, theyt lioes are tristated

 ter 18

 ar RAM, Whem have 1 is tarmed an and bans 0 of
 howerer
 use at the morisent.
 the 280 is off and the 8502 is in charge- If the pim

 hele.

When boutlin of these fincs are lowe dow of the

 15. If cary be referatl tide MS2, and prete the FLis

 the Plah lin Clide rater it will red lugh, Thal is

 [riden ther Mitl!!

16. All the Memory Maps

With regand to memory zisuls, hree differnat pamplefe ire in the C128. The Cli88 itseff
 Led slyle, lhe three coorputers ario poimed logether
 ghete todnponents, sug times and other hatiduare: They to not thare memory maps: Each surfathe
 apart from each ather. Howevor, ewen thouth the
 play.
'Ihe same phyticel retivent int repregenten an

 bre axtmal moridge ROM suckell, a charater

 [nfiggrallore. For the C128 and the C64 mudes. The
 1f:any of the thep that cath be addressed hatwe tronlWher ther it will casse syuquथा

 mode that userssaspect owips. Wher yru fond the fod thip of chars ard replace them yra will luat fred ali three moder all be some time,

It is protanibly feest to do lroublewhotime in the
 cularge, ill the compulex io completely gown and
 the machine is ofrctiong, atherght ladily, thath this.

 Mondtut thal onfly aphears in the © 128 mose. In is

 tito memory gand then pecte to see if the sidnats have altiwed intart. The murriter athe is able lo dead ther

 10 produce thoir momery mans

Chip that is op the mop. These ane powertul servis-
 purpobely tartalled a eqgal gerserblur abd shecially
 Hefore ma get fult lle signal mantulations with the

 are LORAM, HIRAM ned BHALLM,

The 8502 , 116 Por

 23 and 25 af the PGA, In the PLA dip, "hey will mombine with gotie ather sugtila to do the billowind jobs.

 foll crolor piture while showing another priture
 tho clanderar EWM of and wa in a paricular bank

 The charsctar ROMN whares wheseses with lit

 Natrespes;

 The interfad and gyalem buses are directiy com-

 cidut as shown in Fir, 16-3, the lig rexister kus

 Tegister Addrear di if reservetil to the the $1 / \mathrm{C}$

 rear is the geripheral outpul butier ragibter. Il sim-
 = HIRAM and - [CHMER

 mected to the exght-tit data bits of the spsteta, ith

 procesion. The rest of thith ia independenl of the मिructsont

 the OR Lecehmes wingle hat ingut. port The persputive is form the prowessor, Whena bit is are ayt-

A sioule bit port passes sixgnal throngh ome line. Bits O, 1 and 2 are and to be nutpuls. RAM addresa 0 , the 1)IJR, therefore has 1° y plaved in those thowe bits. That way, when the processor wants to crutput -LOKAM. =HIKAM and ©CHAREN frous
processur pins, if sends 0° s to hats 0, 1 and 2 of RAM kocatoon 1. the ()R.

LORAM, IITRAM and CHAKEN do an imporcant. but yuse a small, part of the handling of memory. They do select frome sections of color RAM and

 1 nets ats the oulpul regeter.
bank the color RAM in and cut of memory space shared with liO chips. This is only a small aree of concern in the vast memory maps.

THE C128 MAPS

The CLEA mode nakess the most use of all the chips that can be addressed and are thus residents of the meroury turps. The 8502 cm only address 64 K at a tume, with a potential of 385 K addresses tiat could be placed into this machine and addressed. The 8502 ts able to separate the polential addresses into 16 different banks and address them one at in
cime as it swricties from banic to bank as an instant's notice.

The hyout of all these addresses on sll these chips can be thought of as a builufing with cight stories, as in Fig. 16-4. Al cight stories have address numbers rabking from 0 to 65535. The precessor can make up a 64 K four by chocxing addresses from any of the cight steries and putting them rogether as one flour.

The bottom foor floors are four sections of K.AM. The bottom foor is 64 K of RAM U. The second floor is 61 K of RAM 1. The thurd and fourth

finors are esch fak if RAMI 2 und 3 hut they fin mit exist in the prewent C128. The reasua they are in--Hoded is becasise the \$9.311 is able to address them in tour of its banks. If you do use these banies. the C128 is proprammed to gave you substitute RAM sections. Instead of KAM 2 you'll be green KAM 0 . frateand of RAM 3 yous ret RAM 1.

The fifth flokr has the addresses of the four ROM chiys that cuntaiu the SASIC 7.0, the Kernel, the screpes matox and all the 10). (hrertls above the IO) is the character ROM addresses in a sparsely pupulated elighth fleor.

The sidith and stwenth flocrs are the addresses of the minmal function R()M. U36, and the external carlridge ROM respectively. Figure $16-4$ shows tile eught-story kreilding and the berendarics of the sanous address tirxike in both cherjuail ame hex Table 5.2 has misre derais.

Becauske the 85022 can only aditrens falk at a purme, all of the addresses in itil eight sturies are pare. utombed cut in $1664 \mathrm{~K}_{\mathrm{K}}$ hanks of convemence. The R5che can quarkly switch from bank to bunk by situply issuing tue lxank comenand. The compater comes utt in bank 15. Then as the need fors a particular chiss is rechared, the banke command is 1ssucd and the hank conlaming the desired chip connes on and the chiy cian be accessed. The fact that the C128 can swotch bardon so quactla and easy malkes it a very powectul mathiste.

Arnother feature that increasers the versalility of ine addressing is the relatornstop be-tweea RAM and RovM. Fur instance. is bank 15 the 64 k resudents are K.thll I, the BASIL and Kersed ROMN and the diO group. Floons 1 and 5 are Included in base 15. This is a two-stery banh. The bealtom doner is 64 k of R:IM. Abore that is 48 K of $\mathrm{R}(1 \mathrm{M}$ and IUO. How
 FGving the same addresses?

The mactune is buile so that of an adricess ta sent - wit to a ROM location that uverinys RAM with the strme addicess, the followiak hipapens. If the access is a read, thres the KOOM in read. Strunk dre ncceess be a write, and the ROM cansot be wotiten to, then the RilM gets the sata bils thas the 85012 is wrome 10 that addrens.

If is true that the data hits, siured in RAM because the ROM can't perform in that way, cannot he retrieved in that balak. If thuse R43l induresses must be read. all that is ieceded is lo switcb (0) annther bank where the \mathbb{R} (lM is mot overlaying the ROM. The Rill hits cam bee read while the acw bark is in use.

The I/O chips, alsu overlaying some RiMM with the same addresses, are handled too. The I! () chups have princity over the underlyizg RAM. The tio) (an be boths read and writen to. The Rill emams dormant beneath the II(). If the RAM beneath the IV() must be accessed, then tiese agrim it is an easy matter 10 switch to a bank with no addresses over the KAM addresses that need accessing-

As you look wer the aight-ntory buldigg and relate is to the 16 banks. you can see how the banking lets gote acceass all that memory with only 16 addresss lines.

THE C6A MAPS

In exmparison to the C128 evight-story buiding. the C64 mode in the machine is only a twerstory uni? wrth a fittle penthouse on the roof for the chasar.ter $\mathrm{K}(1) \mathrm{M}$. as shown in Fisg. l6-5. Nin baniks are sthown athurgh with the signats, LORAM, IIRLM. GAME sixil FiXR()M the 8502 知 able to layout as least seven diflerent ctipe confegurations by pitking and chnosink among the chups.

Programming in the C64 mode is sometrmes usctul even thought the C128 mode is tar supenor. The inclusson of the CGA mode in the bachine was dome ase that all available C64 software will sum nas the C:128. The C64 mode is quite like the C64 marhine itsell. There are some differences in the $8: 502$ aud the new upsraded ViC. The sfferences itre: the extra P6 pin in the 8502 that bunders the CATO: LOCK icy: two more regasters in VIC that read the extra 24 keys and contred the cloch rate. These leatures. however, are used in the c'128 mode and not too useful in the (544 . A programsmer curuld find thems handy in sume instancers.

The first thor of the C'fa building se a stratch af 64 K of RAM. Overhying the RASH is the C 54 BA . SIC ROM addresses, the I.O group and tive kier-

[^0]nel. In ehe penthoctse. thove the 100 grenup. is the itaracter R(JM.

A tutal of 65 K of memory clip adtresses is in the CibA mode. As meatumed abrive, the 6ith of RAM stretcies acruss the entre first fixar. The seand floor and the penthouse lave the adtional 21 K . They owertay the RAM Inum andiress 32768 to the end at bis535. AD of the mecond fion tretwress 327tis and firixiar are not addressen on chips. A lut of the linaticms can be empry. The addresses truan 3276 d to 44 bi59 are reserved for a carturdpe R()M. Whes a Clit ROM is in place, then the area is vecupiend. The sk BASIC ROM is as 409610 through 49151.

An uncecupied 4 K area ve from 19150° tes 5.5247 . RAM is berseath that esupty area. The RAM can be useful. Frinm ri3248 in 5734 l is the SiO group. Fing. 16-6. Frim S3248 to 53294 we 47 regjeters m VIC. iddreases 50272 through 55245 anc 1023 hocaturlw assigned to STI). From lenations 55296 to 5 F6334, ant other $1 \mathbb{1 R}$ is where the color RAM is found.

The next chip area is fur the CIAI and CTA2 andresses. The address space allentated for the CTAs is 56300 l 56831 . Thein above the entire $1 \mathrm{k} \mathrm{I} /()$ afea, with tive sams addressasi bui une dour above. ts the chawacter ROM

The final chap on the secoms dewr is the 8K Kex. nel with addresses from 573 th throngh firions.

THE CP/MA MAP

The 280 is sery different tol muheun lroms the
 uses sor run CP: M programe is absu amolang lite the 850)-based maps, When the CPiM mode is in use then the C128 and C'64 operatump sislearts. for the auses gart, ase turned off. The uperatung system. whoch dictates the suap layout. enters the marhine from the CPiM disik of the extermal dask clrive.

Whern the CP'M masth in demered, the CPiM diask es placed to the drwe and the systerm furned um. The Z, (6) as ushal Resa the machune stared and then
 recopruzes that the disk is in the drive and ratlues than set up for Cl28 or C"Gif mode. it goes mon the CP:M mode as a helpmate. It will handle ill itre disk access or telecurnurumataurus that will be nepoded in CP;M. The Grse gob that the 850 ere then deves is

What some of the contertes wit the disis meo RAM. dhase loaded is then turas control back aver lo the 2: (

In the CH:N mate. The memory man structure appcarx as a two-stury buidelng as ahown in fixp16.7. On the buttom Buor is ibe 64K of RilM 0 that s cevertayed by surne ROM areas. When actual ROM chay addresses are nver the RAlls, the KOM ras be read, bus when written to. the biels are stured in RAM, yess as the other modes do. In CliM some. ROM is used frum the ficmued and a lewe other sputs.

The frse 4 K in the boitum floms is Kermel Res.M that is at lecations 53248 - 57.743 en the 8 R202 smemury map. The RCM shurw up in CT'M at addressees 0-4995. The R(MM perfirmis ail the stantup proceduress that the CP:M needre. It alser cumtams the pren. yram to teset. When the R(DM is needed dumas stant up or resee: the Zax) turns off: the visure turas an: the routines that are needed are run. Once the machare is started ur rexet, then the 2 She shats edown ard turas controk back aver to the दad).

From 4096 tu 6144, the theybarad defrivoms arul the sif column screen storage ame addressed. Firnan 6115 tes l02'3y, a part of the operating system is torated. rabied $\mathrm{CCP}^{\circ} \mathrm{P}$.

A suretch af nexthary fositws from 10250 to 57:14.3. This foulds the BIOS and BIOS programs Llat work with the CCP to oproare the CP:M. The rest of the fish area is sull of manys vertors and nastoven lu aid in runimg priguams. In this area are the MM() regreters at 65280-65284 thex FPU(1-FF(A) al the salme autdresses as in the 85002 modes.

On the seccond from \{amether tiak strethth a long sectiun or RAM is addressed. If is called the Tramssent frogram Area. TPA. It as about 59 K lnag and is twed ay RAM. After that, the sest of the secroud Duor is taken up by the BriOS and B1OS commoun ssegs. The MML reserved anca is on the senond flenes cun.
 tixolned illewve. They are the foragrams that muke up must of the C CiMM uperating systern. They are insialled on RAM tom the L'P:M dak. The LCP. Consoke Commazad Precicessur, is the prugran that gety the forogrammer inin the operateng system. It has important cuatrol curturcinds. These commatuds are

TYME, ERASE, RENAME, IISER DIR and OIRS The CCP wurks in the TPA, where all the application programus are performed. The CLCP has the Propram Loader which loads CP/M proygatms from disk moto the 59 K TPA.

The BIMOS. BASIC Disk Operating System, is a proveran that contains furrtions which the CCP and other pronerams use to input and ouspur distr and character uperations. Also. it is the center of LP/M uperations and acta ata a fle system.

The BIOS, BASIC lapur Outpur System, is also used for I/U interlaning, but handles more complex lasks

These three sets of programs are impurtant to the running and writug of CP/M socherams. If you need mone information, the trranual thas came with your C128 will gue you references where mase de tail an be fuund. For troubleybooting purpuses, these details are not imporuat. The mernory map for CP;M. though, mold be usctul.

PEEK AND POKE

The previous discusssons showed buw the chips in the mensury map areas can be comfigured in nuny ways. There are 16 banks available for C 128 mode. at heasl seven maps for C64 mode, and a CPMM map. All these mapric use and reuse the same cheps. When prouble striker and a chip is suspected, it is gus neccesary to use all modes and maps even through the rrubble is affecteng an of them. If you can find the tade chap and replace it, then all the sumph wall retum.

It would be semadje to use the mast corvenient aund tastest way to do the tresting, In the C6s ma chine, the beat way to sipmal-traie the chipg with addresses is with PEE'K's and POKEs in BASIC. When you can use them, i.e., is the computer an't down altogether, bey act an a softwere probe. With PEEFK, you can read the contenes of the locatruns on the srap. With POME you can wnte to any RAN location or any 110 addreas. POKE is usebess with ROMs siare they are pead ondy. They woo't accept any more hits.

PELKK is afunction that will rerura an eight-bit bunary gumber which is stored in a repister on the
 it in the ex tees. POKE, dibows you lu wnte an eightiebis bistary number to mny RAM locatoon. You enter the de vured conte ar the hevary bots ande the commanal will deconde the decimal to biarary and install the hits.

When ROM overlays RAM, and you write to * ROM, the buts will be forood into the RAM loca-
 then try to read that location, the ROM bits will be returned not the RAM. An thene lacts are the way the C6is machine is supposed to work. Is is doesn C . then that could be a sign of trouble.

You cannot PREK or POKE \& ctup that is nut a resudent of the mernory map. You can only PEEK or POKE an address. All addresses are 16 bies and
 mel . To gee the coneents not of a location and have it pronted on the screen, all you have to do is trpe PRINT PEEKPR adoress in Jecimal! and then press RETURN. Tu install a munber into a RAM bomation, yee must type POKE(the addross in declmal) and then press RETURN. These are direct moves and do nof require any programminizp line sumbers anlsugh verian write a simal BASKC prorgram to do the same thing.

In the C128 mativie smu can use the exact same PlEEK and POKE techniques. They are hands for a quick check of parlicular becations or in a FOR … NEXT roveme boten of hocabons. Yove con read the values of ROM locations wose if the chip is operatung of the lacation had the correct mamber. You can write a number to a loration or a batch of mumbers in a smail propram so RAM or WO. Then Fous curuld read that locatiun or locationst to see if the numbers ever anrived safely. If it did not, that could undicale a deffective ehip or a bad I/O intertace chip

The BASIC ROM in these cares becomes a software sigral ijjecter and tracer. The eectuviques are indeed useful. Io the C 128 in C 128 mode there is a second device that is even thander. It is the Machene Lamguage Moniucu. It does everythung the BA SIC ROM can do and more efficuenty.

MEMORY AND FILL

HASIC Uses decimal, but the Monitor uses lexexadecimal. The memory map must be addressed in hex. Note that the Murutor only operates in the C128 mode.

To get the Mouitur an, either type MONIT()K or press the F8 key. You win be greeted by the word MONITOR and the coustents of the 8502 programmable registers, as covered earber. When you enfer an address into the munitor, use five dipits. The furst digit is the bank you want addressed. The 16 banks in hex rum from 0-F. Atter the bank number. use the four dakies of the address.

The Monitor bas a list of commands that are needed to program in machine tanguage. Two of them, MEMORY and FILle are somewhat like PEEK and MOKE. They are very conveniens because you can get a result by simpls typing M for memory and F lor fill.

With the mesmory command you can display the contents of any ROM or parts of the ROM. For example. supposse vols want io read the rontents ne the Kernel. If is located at the hex addreesses Enow through FFFF. AB you have to do in enter:

M FEOOOD FFFFF

The entire contents of the Kerned will thea scrudl down the screes. If you want to see aty particalar sectiun of the KOM, you can stop the scrolling by pressung the RUNSTOP key as the addresses ge) by and the section you wans appears. If you only want to sec uste area, for instance:

M FEO18 FEOC8

then one screenful will appear. Try il. Note, on the rght-hand side. the row of eight praphic characters representing the contents of the eight hex pairs on the same line. Each bex past is the ASCll code for its respective graphic. With MEMORY' you can look at any section of memory. On each line displayed, there will be the bex contents of eight incationes. followed by the eight graphtics.

U yow want to read the character KO M , sill you need to type is:

M EDOOO EDFFF

and the contents of the ROM will scroll past. Bank 14 was contacted thus ture with the first address digit E. E is hex fur decimal 14. The character ROM ondy appears in bank 14. If you hand typed:

M FD000 FDFFF

then the cuntents of all the registers in the 10 bluck would have scsolled past. That would have included some RAM reyister contents that are bencath the IOO block where there aren't any I/O regssters. Whale MEMORY acts leke a uuper PEEK commsand, FILL is a super POKE, For instance, a good way to test RAM chigs is to exercise them. An exerclse. could consise of first looking at a section of RAM. In bank 0 there are 61 K of RAM and Litle else. A short section of RAM picked as random is 7)50R-1).567. IV the command:

M 0050800567

is given, then the screen witi display the cootents of 12 nows of cight registers. Following the regisser onntents are the eighl grophics on each line. The unwsed RAM registers should display cither 00 or FF. They are, of cource, bex for biary 00000000 and 11111111. The graphic for eight 0's in the C128 is a period and the graphic for eight I's is the Cirpel pi

One Fitue exercise that the Montor allows is to change a register's contents at will. Using the cursor controls at the top of the keyboard, place the cursor somewhere in the middie of the disphay on a register. Then type 54 and press RETURN. The 54 will replace that chosen register and the capisal letter T will appear in the corresponcting graphic spun.

The mumber 54 is the hex ASCII node for T. What you have done is poke the 34 imto the RASS register. The VTC then came along and consernend
 59 and 54 info the next three registers，thent the word TEST will appear in the grapric section f you car dio that，then the eipht RAM chipe in hank is turve perflormed elayr．Bementyer，there is ond bin it each repristeri an eypht chipk－They all get tested lal this Frap at the same tirme thoded the lest not work，that
 Rhl itp．

 The following is a fithe RAM stres teak．We can use the wane digplay．Type the boomiond：

F OCDO 0 do 587 FF

 L4567 in bank 9.

 You wiew thenl wither

FODEO日 ODSET OO

 sor menveg a tine：Then the coumand：

M OD50日 OOFG7
is contcrad．The digplay rrow end tir regiaterg ad－ dre－ased in lynk th are lilled with lown．The graphice change to all periods．If anl of the hivate mat be in－ stalled now thea 评 of lle liows can be made to re－
 axd corda are these，eipht chius are trouble－Irey．

To exerime the wher eight RAMACHAs，wituply

 the blowe afe walell mopl of the time．If the RAMA

 doeq not happen wery wille

17. The Clocks

The master clock in the CL2B na based around the chuck chip, U28, the 8701 16-pin UIP. The chip is the drammer for the marchong of bits that takes place in the computer. As the chip beats unt its frequencies. the bits manch throughout the machine.

Figure 17-1 shows the schematic connectiuns and unasediate aircuilry for the cloxde chip. The chip has a crystal connected across pinss 13 and 14. When voltage is impressed on the crystal in starts uscillat inse at one of two frequencuen. In Aaserica the clock rums at 14.31828 M 1 Iz . This trequency can be tivided into alt the frequencies needed to cenform with Amencan NTSC standards. The uther master frequersey the cseilator cate nun as is 17.73147 MHly . Thus frequency can be divided intu the required Boropean PA1. हtandards. There is a jumper corming uff of pin ?. PAAL, of the clock clup. Whess the gumper is upen the crystal sums as 16.31818 MIIz. If the mattine is to be used in Earope then the jumper is connected and the frequency modified for Pid

Connected to the enystal at pin 13 to gromend is a tiny variable capacisance, C 20, a $4-40 \mathrm{pr}$. It can be adjusted and witl change the oscillator trequency a smand amount. The frequency can be checked with a frequency counter. Connect the inpust of the counter to pin 8, 0 COLOR, of the chock chip. Ad just C20 for the exact frequency of 14.31818 MHz in the U.S. In fiumpe ture for 17.7344 MHz .

The chip outputs are at pins 8 and 6. Hin 8 semds a sgrnal, called oColor, to pir 29 of VIC. Pin 6 sends a sigmal called $\Phi \mathrm{IN}$ to pman 30 of VIC. The most strilkIng difference between the frequency renerated by the crystal circuit and the subsequent cock output is: the crystal produces al sine wave and the chip changes the sine wave and outputs to a square wave.

SINE WAVE TO SOUARE WAVE

The ungat circant to the clack chip is a sane wave proctuxed with the help of the crystal. The erystal is only part of the escithator cincut. The rest is inside the chip. The sine wave is an analong sivenal, Dise-

CLOEK COMPEGCTMMS

 Whly uppealm wath sifure wavet. A sine wawe tor

 On the other handf, consigitg of one lout achainge up-

 waytes with tight and lame only.

The rlecic rircuit besider theing a crastal nutel-

 is changen.

shat will at diedition of hall the crate at the fow wollagp. At the endiff the low duration, the wollage gest athitight in to the high vultuge with ou time elapsang. Theor for the churativan of the rest ar the ctycle.

Whate the aboye is the destription of a theniret-
 ta change. from low to blath or ligh to kew in zero tinne. There moent be berre lime used to make the
 measured in liflionths de. a gecuak-but it is tirne.

The setual waveshape olepes to the rimht nud

PIN 29 VIC

Ecope Piciure 0.1 ns

The low to hugh is called a rising edige, and the hich1 to low transition ta calsed a talling edge. The ediges are vizal in digital circuits to trigxer a lot of the activaly.

The sine waves are generated at the my̧atal oschlator circur, converted to squase waves inside the chock chip arad cutput from two ckock pans to two VIC pina These input square waves have names. At VIC pin 29 the sipmal enterng as called α Color. the culur chock. As VIC pin itu the signad is called ϕ IN, the dot clock

If you are cqupped with a suod scope you can new the color clock and the dot elock. As it 0.1
mucromecond scoge rate, at pen 29. Fig. 17-3, you'tl sec about ten square wive pulsca A pin 30. Fig. 17-4, there are about six pulses. The pulses will have a peak-in-peak wodlage in the nexighborhond of $4-5$ volts. The scope 安 reasly not that essentiad. The hogk probee will read PUISY, at both of the test points. This is a guads sest poins to determine if the ctock is running. No pulse, of crourge, indicates that the cluch is off.

Inside VIC

The square wave caters VIC and proceeds durectly su the VIC clock gewerating circuits. The

PIN 30 VIC

Soode Piclure 01 ms

Fig. 174. The scope will show atout sha square wavee of the dot clock.
two square wryes ilso gu to other circuits fo produce the syncfluminance and chroma display outputs. hut this is covered in Chapter 20. The syssem clock signais are these to drive the urternat cippual circumts.

The first dock generated is the 1 MILx ctrek. It is made by dividing the incoming clock frequency. Thiss suakes the clock approximately I MHz . This is the system bus dock and exits VIC ut pin 18. The 1 MH 3 s frat of all is connemed to Sil), the ("IA2 and ilse Expansinn Pont. Then a tap is connected to the 1 MLte cluck lisve. a 68 otum resistor is placed in senes and the resultant signal is called D1MHs. The DLMHz is sent to ANI) gates to work with the AEC signals. AEC and the 1 MHz control and clock the luss line actions. It almo goes to CLAI and the liI2 inerh in the 280 data buss interface.
()ut of VIC pin 23 goes the 2 MHz clock. The 2 MHiz clock is produced by also diveding the frecuencies. The 2 Mile clock is chargeable. It is able to rur at either $1 \mathbf{~} \mathrm{MHz}$ or 2 MHz . In lact it could ran at 1 MHz a lot of the time. It ruos at 2 MHz . only under the folkowing comasition.

ISit position (I) of a regaster in VTC at adress hex D(a30, decimal 5329%. wets up the 2 Mliz clock Irequency. If the bit has a high, then pin 23 will oustput 2 MHz . Should the bit hold a low. then pien 23 outputs 1 MHz . There wit be more abnut this register in Chapter 20.

The so-coulded 2 MIlz chuck has a number of dentuations. First of all it clocks the 85.63 video conimiler chip. It also proceeds directly to the MMU and the 8502 processor. With its versatile ability to rum at either 1 MHz or 2 MHz it has a great deal of onntrol over the computer.

The third VIC generated chock is called Zs00. It in a special 4 MHz cluck that is desigreed to operate the $\mathbf{Z 8 0}$ processor. It comes out of VIC pin 25. More about this dock will be given leter in this chapter.

8502 TIMING CONTROL

The so called 2 MHx dock trom VIC. goes to pin I of the 8502 processor. It is called $\Phi[\mathbf{N}$. As mentioned, the 2 MHz clock rusa at either 1 or 2 MHz according to the state uf the 2 MIla bit in VIC. Let's examine what happens in the 8502 when it is driven by the 1 MHz moxle.

The 1 M 1 l z pulse caters pins 1 and goes directis to the Timing Control circuits in the 8502. Fig. 17-5, It is the ondy imput to the circuits. The circuits sake the inconmig puises and generate three ouspats. The titning circuits are based around a phase detector circuit. In thas circuit, the incoming $\phi 1 \mathrm{~N}$ is split into two pulses, both stivs runnink at i MHz but made out of phase with each other by 90 degreas. They are called $\$ 1$ and $\$ 2$. These two ϕ signals shourd

Fig 17-5 A one MiHz goes tis the liming control sire .llt in the Brom provesgor
soot be cunfused with anty uther os siggals in the computcr, These are internal in the 8502e.

01 and 02 are then input to the Instruction Reg:szer and emter the decoder section of the registes circuits. The decoder matches the way the adderess and data bus pulsese are ruruting. $\phi 1$ is matched to the address bus pukses and 42 with she data bus pulses. $\$ 1$ is guing to be the drammer for the address bus and d2 the drummer for the data bus. The bits in these buses will march to the beaf of their special drummer.
ϕ I and +2 thus become the workiny frequess. aes of the 850%. Figure $17-6$ shows the timning of the signals. The two signals are quite alike excepl treve tirulys are int of phase. Thas makes ther hus: and lows stagrered. The sketch shmws that d1 has a high whate ϕ 2 has a kow. Then whers di2 greua high 61 goess Jow. Nate the stanted rising edges and falling edgees that represent the stort time that eligrses herween the haghs and lows.

Fisure 17.7 Ilustrates one cormplete cycle at \& MH: That turans the cyele tukes place in nome millexmth of a second. Because 10W0 silliunths uf a second are in one multomth of a second, and bllonnths sise ratied nanoseconds, the cyrde is lakisug 1UXO) ns. Tlx as is the comventional measurement of the clach cycles. The hugh and low represent the vadtage involved.

The mportant part of the cyrse. to the computer, is the duratioul) of the hingh in the cycle and the eqrick voltage change of the edge. The low really doessit do much but ruark time whice the tughs and edges are producing the computme. The hixh in of basts for a duratom of 4.36 ns . The kow in $\phi 1$ takes place in 470 ns. The stamly rise and fall edges take. place in 250 ns.

What are the hinks and edferes duieng? Let's take a trip alung with one cycle of 巾1 and 42 . The cycle begius at the risisue edge of $\phi 1$. Reaneraber that the instructiuss deculer, where the signale are operat-

 querares the cata bus.

Thg, is contrivited uside the 851)2 to and the repisters and insernal lues linem of the processur. As the cyele starts the roing adge of © 1 is changong trom a low to a light ie 25 ncs . The fast chanciunk voilage hus a triger ethert.

As mentioned, कt is concermed with adelfegs. 10g. Therefore Ulse renang edge trigpers the program comber. It finces the PC so place the current isdstress in the 16 -bie regsser to place the bits enrto the addreas bea. d2, meatrwhile, is bow and not ducng
 cle hass hit buttom right hefore the rising edge of of pook off.
()nce 中i puts the address bits unter the address hases the high cluration of $\phi 1$ Iakes place. It insts for 430 mi . This is plenty of time for the bits to travel the lenath of tbe addrenss bus aund upera up a location on the memory map.

During the 25 ns that the of falling endge takes. the $P \mathrm{~F}$: is triasered by the shock of the fast voltage. change from high to low. Thas trigeer makes the μ^{\prime} '
mocrement itseli by one. This sets up the next sequential address. That way the PC in up and waiting for the next cycle.

As $\$ 1$ begins its Inw, the low in $\phi 2$ nomes to an ead. The rising evige of $\phi 2$ beguns. The '25 ns rise triggers the 8502 to place the byte of data is is inlerested in oate the data bus. If the operation is a read, the dala un the addressed location is placed on the bus. Should the operation be a write, the data the R502 had leen working on is placed un the data bus. Either way the $\alpha 2$ rising edge places dala on the bas.

Next the duration of d2 talres place, (or 470) ss. During that ame the data is well able to travel from the memury to the 8502 or from the dala laus butfer in the R50\% to memory. As the $\$ 2$ duration ends, the Gilind edige ciccurs. It causes the data from memong to be latched into the Instruction Register of the 4502 durnigg a read, or the data from the 8502 to be latched into memory durnR a write.

The ©

fit receives in machine languge STORE inguntim．

 recenter a LOAD instruction，These wo inkluatins we the most used members of the Instruction Sel．

GTHER TIMANG SFGNALS

 the origival clock siguol．There are frye of these other sigralas．Four of them the 9502 国 allle to geterate， and VIC makes up the fith one．The Arst siphnil is an edge 如 triazer the ctata busf direction，it it the れ＂出。

The Ris + Wi ta

 is low ：flee buffers are mate to transsuit data the the Clata pars．

 line refianins stleddy．The stite stitus that woy for

 and becoree yery stathe．Thas wyy when the state changer it wuile Ehate up ewertiting．

Thed Peatl＇wrike setup bitine if culculated ti be

Owe thu＂line groes furh for a thead or low for
 Whet state for the repi of the dil bistand dernar ther
 the eyde de ei gocs lew．This is calded．readimote

the spote．Ater the baid time，the live coritd change It is safe to make the change thers．The rest of the： sensitive ligutring fast stignelu will not be dikturfied．

Abdress Signala

The 中t elotk triggers off the adulress sut of the
 does the jof The aldifens：sightal gets ite stat as

 ulters getup time in begurl．The sighel travels to the proptum counter．The adress betmp timie is sypi－ cilly abnut IOO 彩 at she end of the setup time， the address rannal changes stater．The setup time亩 alta needed wilta the address line it marder not to destablize the activity．

 aldurcis bux at the end of the cyrole kor din addreas
 wive be tralding tor albour． 30 ns：

Another addruss asprati in the Cles eonaw from WIC，VIC is considefed in artade game mashintes as

 for updale informution ta feep the dibiplay intact on the TV soceen．it chatifen the adtrmas bus with the品い。

WTC dowes thin by usieng une of ith nura genes－ ated siffrids，the andress enable controd，ofr AEC ． The AEC time runs all around the Cl28．There will the merre abrat the AEC comentinas to other chiph on Clibuter 20

One of the AEC chumertiotis is at prit of the
 that can then the address arcuits to the ostiz off and
 WIC fose shut the 850
 nancral．

AEC is dosabled and worn imtertere whise the 85: 2 conducts its husiness. The 85ter korows Ulat the ondy time the AEC cad stiut it dowss is when the Atci ine is low. When the Af.CC is lught the 85012 bas cums plete consol. Tiverefore the 8502 conducts ats affairs while AEC is hisgh

The 8.502 mast adso ubserve as AEC setup ume it the AEC i changing from low to hight. The AECC setup tione is a maximum of 75 ms . The AEC zetup tive mast be cuncluded by the time the RioW and adderess supnisis haver faveshed theor wetup urs. There is no need for any AEC hold lime. While the 85012 is operating the AEC line just stays high and does not interfere.

Data Timing

The Ki•W, address signal, and $A E C$ all were. limed with the ligh of the $\$ 1$ sigenal. Ihate limings worles with the ligh of 92 sixnal that uccurs abmut 9K) degrees after the $\phi 1$ in the same cycle. The first thing so nbserve in a processne is the memory read secess time. The $\$ 502$ has an scemss turne ulf aboust : Whol ns. What dees this mean? 't refery tu the armurunt of tunce that is available charirug a cycie to receive data froun residents of the memory map

The ameses time of the 8502 began near the firish of the high of $\$ 1$. As the read/write sctap time ends. buth $\mathrm{RL} \cdot$.Wi and the address simpal have jusi experienced their rising edge. The memory read acress tink shnwn in Fig. 17-8 hegns at that instant.
 sber read data from momery or write data wo nuennir:

The A164 DRAM clups raust be able to send or rerejive data in well umber the 300 as access time of the 850). If they have an arcess time of hin) on or thereahouth, then they can easily be accressid durring Use 8502 accessing periond.

Once the $\mathrm{R}_{\mathrm{i}} \cdot$ Wh and addreas sigmals are setwe. the acters time of the 850) commancen. ©1 cum. pletes its hagh and poes through ity Lalling polge. \$'2 then begina lis rising edge. In Fix. 17-8 it is shown that the trigger elfect of the edgye crables the addressend chup. and the dinta conxerred is plaied on
the Sine hus. Bronge a read the data heads for the 4, ill.

It takes the data about 1(K) ns in make the orp from R.A.I to the 8502 . This is somt of a selup time periud. Once the data arrives at the $85 x$ re. it can enfer one of twe phaces. If the data is an instruction code. if is accepted by the lastruction Regisier. Shosuld the data be an uperand if is shurtied over to the data bus hufter. The ayoout of the program lisees notates which groes where

Before the IR or data butfer will accepat the biss. they must wat a sbort pernod of cime while they stabilize. The trip from metnony lo processor could have upset the decorum of the data. The data stabitity nome ix about bit ns. During stabikaing tume the. falling edge of d2 vecurs. Thes failing edge triggers the opening of the IK and the data breffert. The stahilized dilia is then sllowed to criter tbe procersanr registers.

Ohwe the data as strobed intu its assigned rep. sster, a bodd tirne musit take place. The hold times in brief, alaut 10 ns: 7he data is then froully ready to be processed in the 8512 .

Dunnk a write operation the ruutine is very sirtuar to the read. The processm access time is the satue 300 ns and begons in the same way, that to when Ri-W and the address sipnal funish their begrusume edge. The $\$ 1$ hagh then falls and the $\$ 2$ rismg edge cakes pluce. The memory address is erabled and the $850 x 2$ jatiaces diata on the data bus. The data then speeds to the addressed lecation. A data setup tunc takes place for the wrize operation. If is abuevt 1000 ns . The data from the 85002 anproaches its memory destination.

Again there is a diata stabaity time segment of about fol ns. The filling edge of $\$ 2$ nocrurs. The staWe data is then let mino the location and the bits arre stored in their respective bit hobbers. A 10 ns hold time rakes plobe. The tranafer is cromulete.

Reading and Writing to Peripherals

When tbe 8502 wants in read data from a periflueral, all it tus tes wriry about is the setup tame. 'The R' - W' and the adhleress samnts arrange the diexe.

 peripheral This 被 all reme turnn the risimy edge and lise high of icl.

The whiting to prefipherata is ther riewtre opur-

times，the 8502 places the data for the penpheral on the data bus．The data then talses a trip to the peripheral．The fallong edge of occurs and ibe data is strobed intu the peripheral register．A serup time was not needed，but a considerable hold ia requred． It in called delay time．The data needs a 300 as de－ lay in order so ensure that the data to the peripiseral arrives with validity．This woriks fine，except thas it slow＇s down the transter of data in the perpheral．

The way the clock marches bits to address lo－ cations and cransfer data has a lot of intncate steps． Each s：ep is simpie ard not cunfusing．There are just a lot of atcps．

The 2 MHz Mode

The so called 2 MHz cloct has twon moder．The I MHz mode of the 2． MHz slock has just been diss－ cussed．What about its 2 MH z mode，the one the ckuck is named for？The first thang to consider is that the clock is rurning twoce as fast．In the 2 MHz mode．the cluck is complening two mullion cyeles ev－ ery second．This change culs the ruucober of nannse－ consta the cinck iakes for a cycle to about haks of the ns needed for the 1 MHis mode．Whale the 1 MHz roude needed abous 1000 ns to cycte，the 2 MHx moode needsalurul 500 ns ．Accordiang io the specifi－ eation sheet，the 2 MHz dock is said to take es－ actly 1049 nis．All the other rimings surch as setup times，hold times．nsing edse tinwes，falluxg edge umes and so forth，are mostly cut in trals too．Table 87.1 shows the tumags an 8502 in 2 MH minde re－ quires．

Teble 17－1．With -2 Mitz clock wome of the Illuings are helved comperod to the i MHz weraton．

THMNOS FOF 2 MHz CLOCK	
Timungs	Manoseconde
Cycto Time Pismg Edges Falling Edgas Asjress fiol in ALC Sビいま Averess Holl Datn Scel．ap nala Dala Hows	$\begin{array}{r} 489 \\ 10 \\ 10 \\ 50 \\ 37 \\ 40 \\ 100 \\ 40 \\ 40 \end{array}$

A complication can happen when the 8502 is made to run at 2 MHz ．The 2 MHz works smoothly when the 8502 is transferning data to ask from the RAM．ROM and other miternal chus．When the 8502 is performing liO operations，however，the ciock speed in 2 MHz mode sometmes musi be adjusted to the 1 MHz mode．The 1 MHz clock drives all the 1 HO chips even then the 8502 is in 2 MHz mode．

This adjustment is called clock stretching．Fig－ ure $17-9$ shows the stretching technique in 2 MHz ． mode．The top square wave shape shows one 1 Milz ceicle．Draing une i MHz sete，there are swi 2 MHz cycles．Note both a low and a hagh in the 2 MHz waveshape clurixg the bow of the 1 MH wneshape． Then there is another bow and high during the high of the 1 MH wave．There are two complete 2 MHz cycles during one cumplete $\$ \mathrm{MHz}$ cycle．

In the second set of wases in Fig．17．9，the top wave thows the 8502 making $3 n 1 / 0$ access in the 1 MHz mode．This is the normal wave arrungement the 8502 uses to hocerss diO．It workn perfectly with－ out complication．The third sef of waves，shows the way the 2 MHz mode must be stretched in order to adjuat to the 1 MHz I／O acceess wave．The stretching is performed by a concerted effort be－ tween the SEKK．VIC and the PLA．If they didn＂： stretch the chocking，the 110 access would be out of sync with the 1 MHz clock that is driving ant the I：（）chps．

THE 280 TIMING

The 280 2s in strange ternitury in the C 128 ．The circuts in the C128 are all dexigned to support the 8502．The Z30 nust be equipped with 1112 and U13 in orter for it to adjust to the 8502 circuitry．The 200 uses U13 and $\$ 113$ to latch and bafter ita way in and out of the data bus．

The 85012 converts its clock irput from VIC into two individual phases，$\phi 1$ and $\omega 2$ ．The 780 no the other hand receives its own Z\＆N clock Grom VTC bu： dones not split it into two phases．The 780 has a sun－ gie phase clock．That is the bigg difference between the Z80 and the dus phase 8502．＂The \％$/ 80$ goes night ahead and uses the chock as is．

VIC supplies an ciock that beats at a 4 MHa ©re－ quency．That makes the clock twice as fast as the

 1 MHz тende

2 MII atrd four times faster than the 1 MHz . How ever, the VIC only supplies sluck puleses charing AEC low. When AEC is hugh. VIC shuts down the "AK) Howk onatpeat. Tias makes the cluck wave traim cursist of two last \& MHz pulses daring AEC Leww. then no pulsen. just a cuntauous low during AEC high) and Uven twu more pulses as ABCC' goes low again. This is shown in Fig. 17-10. The Z80 is only con nereted to the system bus line dunng Ar.C low. During AEC high is is discumnected. The 8502 un the ofher hand is cxmmected to the buss lines durisk AEC hugh and disconnected dunng ABPC Low. When the 280 can take oree. Thus is the basis for the two processors to be able to work forether. swrthenng frche une to the nebler.

With the processur rummag at 4 MHz bur only being en during AlCC low, it can run the CPMM oper. ating system at ane effeculve 2 MHz rate. The 280 acte as if a continuous 2 MHz check is chirys the bui driveng. Inside the Z\&in the ctock is callerl ϕ \{phase\}. A square wave hugh and law is called. one cleck periud. An mstruction cycke is composed of aboust 12 clock penods. The 12 cluck persuds are the on code fetch, the memon' read and the metnory write. as secn in Fig. 17-11. In Fitg. 17-12 and Fig. 17-13 the timunds are shown.

The rising and falling edges trigger the circuiss in the processor. The first rising edge in the op-code-seuch group trikuers the program counier to place its address hits motn the address bus. The Girst falling edge conses pin 19. - MRWO. and pin 21.

- Ri), to nutpur bits to the memury to produce a read. This couses a copy of the stured up conle unto the data tus.

The second Hock pulse marts tume. The תang edge of the thund ctock strobes the up code that was (etcled, into the instruction register of Ule FIXX). That third rising edge also turas off •3REQ and •RD.

The nemory write operation is quite like the. ifich or read operation. The first rsimg edue plawes the address bits on the bus to the same way. It alsu trigkers - MREQ and - RD on theur way. What is - Rl) domg in this write operation? If you look at the liming diagram, Fig, 17-13. you'll see the - R1! signal is low dunng the memory read clock perinds but gocs hiugb and nut in uperation as she memnry write clook periods take place. As thie chuck gets inten memory write time, the $=$ MKEQ gocs high sou but theon gocs low as the falling edue of the first wate clock bakes pance.

As the rising edge of the dissi wrre clock besuins. Din 22. - W'R, outprats a high. Then as the fall of the seconk write clocte eige taker place, it makes - Whik golow. This an turn causex the data from the processur to sraverse the dita bus and be strobed inso the addressed tacatkon.

That is the way the clock perinds are used an sungte ohase clocks to tetch anstructions, read data, and wrife dara. There are uiso a lat of other basic duties the chock is made to perform. It must energize the reading and wroting to li() chaps, the reftewhing of dynamic atomory, the fabrications of the

 Thes nlaws the 280 to operaty it an effective 2 MHz reto

 and thor Melrom 'Wrate

 to the beal of the ctock.

TESTNG THE CLOCR

 is andeyd ruming:

 If 5 ¢

 trinene the frequency, ss in Fig. 1t-16. Evan theragh you catit read life frequenct, if the enuthre chess dyperr, then the dorth is rucuing The clock fre:

 quency ie mear that valise.

If your are rent equippod whithe foric prober

 dixate the pregnnce off a prabe sre dhadk legit painls.

 fter mackines, the chack has beter, slopper,
 L-

Fig 17.1? Tho first raing edge of the felch lengges ine procram cosinlar so plare the address bits on the aukress times The fret teling odge tragers - MREO so mable the memory chips and enebias the - AL syonal ro ceuse eroed. The op
 siso fums ofl -MRFO and -RD

Itle will read a sont of three-state value arnund 2 volts un the metes face. The needle witl appear a hit unstable and mught show an apprecable wobble. This means a runsumg clock.

It was mentioned eartier that a frequency counter and in expensive scope coukl be usefin. The trequency counter coukd prowide you with the actual frequency at whach the clock is rumang. You can ad-
just the trimmer capacitor C20 for a frequency of 14.31818 MHy. The councer should be commected to $\sin 8$ of 1128 , the 8701 clock clup.

If you decide to periform this adjustment, then try to ase a pickup loop rather than a direct connec. tiun. The loop will pick up the frequency by induction and not make a physical cunmection to the clock circuit. This is advisable if possable. If is is not eass;

Feg 17 i1 The mertiry read operation is very simulat so the fecch operation. The rising eoge places the address on the bus ithe talling anpe trijgers -MAEO and - RD. The lalling adge of the thrd clock sirvees the tasu into the ZEO The

 eus ant standous At the fall of the saccend write clock. WR strobes the data into tive memory locetion.

10 do then use the direct consection-just be careful maluing the cumnection. Yuu could possitily luad the circuit, stop the chock and get misleadang results.

An expensive scope will actually display the varjous clock waveshapes and frequencies. It in rare.
however, that you'i need such scompe detzals for repair work. These waveforms are a lot mure valuable to the design and masurarcuring engneers rather than to a fiek sesvicer. Figure 17.16 is the Test Point Clart for the 8701 clock chip.

PIN : 2502

Fg if: 15. An crdimay TV repair scope will sespeay an onvelcype comaincing an kx is wavershapes

18. Address, Data and Control Buses

TThe C 128 , the C64 and the 280 computers. all encapsalated onto the sighle printboard, share three types of bus tines to pass hits betwreen themselves and the chips with which they commumcate. For addressinn nurposes, they all use the 16 -bir address bus. To pasy bytes of data back and farth they all use the eight-tin swo-wny data bus. For the many ways they need to control the circsuts, there ure a mamber of input-only, output-only and iwo-way individual control lines.

All of the bus lines iranater digital highs, laws and palses. There are no otber types of signais in the digital circuias. In the port circuit areas, there can be other signals such as auctio and culor viden. but in the digital rexemits there are only bighs, lows. pulses or turned off three-stated voltages. No orther working condition can be atlained. If you are best ing the lines, then those are the states you ane hooking for. These copper traces that travel around the grintboard and comere to all the major chipa are very vuluerable whea the buard is exposed. They are of-

Ien the sourco of problents during repar jobs. These troublen are covered in this chapter.

ALl THOSE ADDRESS BUSES

The atctese buses. Fig. 18-1, orignate in the Rover and Z80. Coming cut of pins $7-23$, exceps for fin 21 ($G N 1$)), are the $A 0-A 15$ lines from the 850 ? program coumter circuits. From pins 30-40 and 1-5 of the $Z 80$ ane the $\Lambda 0-A 15$ lines from its program counler. These address fincy are jomed together intos one bus. The 8502 and $7(8)$ can casily share these address lines because they are both never on at the same time. Either the 8502 has contrut or the 780) is in charge but never buth ropether.

Just inside buth of the processurs, between the pins and the grogram counter, are 16 three-stame buffers. The buffers can be fuswed on and off as needed by an imput controt lise from VIC. VIC is a processor in us own right. Il produces AEC. address enahle contrul. AEC is very important in consrolling these widress huses and will be discussed in more

Setsid Lafer in this chaprer. It does at for of tursuing oft and turriing on ass required.

Once the lines arrive at the output pins of the processur chaps, they assume the namess AU- 115 . Sonne or all of ile lines connert fo chips on the nem. ory map. Each chip and every register on cach clup is given its nwn addroms. Firch induvidual address can be opened up while all the rest of the andresses trenails closed. The 16 liveen are, sis mentioned many fimes, able to carry 65.536 individual sets of highs: and lowis. These sels of mighs and lows mrty each a combinatint to opere up une and endy une address. If more thar one address opens duning an addressing operation, then the propram could crash.

In this machane, however, multipde flexry are in the ratary-storied mernury map fuideling as shown in Chapter 16. Many registers are on different chups wath the same adureste. The map is a many-steried
 Door las a possible fski addresses. A hank pucks and Thooses chips frum the cight Dours to furm a 64 K bluck. A bank number must be added in the 16-bri: ardidresses to reach the chusen bluck.

During troubleshooting, PFiFK and P()KF: is BASIC or MEMORY and FILL. commanda to manchine language can be used to good advanlage. These troubleshuotion signal tracing and inge:tion lectrniques operate over the address and data blas lines. As a resull your can use them to fest these bus bines. The actual technqques are diacussed at the end of thas rhapter.

The A0-A15 bus that exits buth the 850.2 and 280 are connected together line for fanc. These fancs go directly us the RAM multiplex ctius, ROMs and ClAs. They alan connect to the MMU, the PLA, the N563 Video Comiruther and SII).

Translated Address Bus

All 15 adderess lenes conskect iu the MNU. Tie 3MC processes them and then outputs the translated address bus. Only cight fincis are in the tuanslated address bus, TAB-TA15. These lines gre generated from the expue lines $A B-\Lambda 15$. The truns-
lated addrens bus performs aidressinis chores for RAM and VIC.

First of all. limes "fAk-7'A15 are conmentod to the iwo madisplex chyxs (U14 and (II5) as shown in Fig. 38-2. TAl2-7'A15 commet so U14 and TA8.TAll io U15. They segureserat the high order akiress bits. The regular kow address lines. A()-A7. are also commected so 1!14 and 1135: AA-. 47 so U14 and A(l)-A3 lu T:15. With these inquts the T4LS2S? multipiex chips are able to form the KAM row anc: coluntar addressex.

The next job the transsited adtress bus dows is use ns TAl2 ine to suhstisute for Al2 in wdirnsging ROMA. ROM\& is dye ROM that must get its address changed when the 7×0 takes over. If you recall. ROMA gets its her addresses DuKK-IJFPTF changed to $0000-0001$. TAl2 from the MMU1 performs this casik. The translated address bus adso is used in C64 mode. It becomes address lines 8-15 of the expansson port.

The translated address lines ate also isvolved dunire the time that VTC is in control and down, some addressung. When VIC is in charge. the MiMll tristates TAB.TA11. Then ir pulls TA12 TAl 5 liget to get them chat wi the way, VIC is then able tos use the TAR-TA12 tines to mutput its VIC addresses WAk-VA11. More abuut this is kwon in the mext ser:tion.

Whon VIC is non longer in charge but an exter. nal device is in charexe suth ass a cartncike, all of the MMU TA lines are instased, keaving the lines free for use bs the externai desice. The device can then use the repular akdiress tines, A8-A15. The dence can then address the entire memory mesp except for the MMI

The Two Multipiexed Address Buses

The two mustipkex chupes mentorned atorwe, (194 and U15, have irpurs $A(B-A 7$ and T'Ag-TA15. The (wo chigs also connect IU VMA)-VMAT-the VIC Mulizhexed Address Bus. These same siguats are atro passed throught 33 ohro resistors. Onue the sig. nal passcen through the resistor, this cutpul set of

buts is mamed: MA0 MA7. the Surtiplexed Address Bus. The connections of the bus sgmals are thestrated in Figg. 18.3.

The VMAO-VMA7 and MLAO-M.AT are pronduend by U14 and U15 when NEC. inserled at pins 150 on the two chps, is high. When AEC is hagh the twro chips mastipuler TA8-TA 55 with A0-A7. The cuertiol for the multiplexing comes in pizs 1 with the Mt:X signal. The at chm series resiyturs then take the VMAO. VMAT and, in turn. multaplex them to prosuce MAO-MAT.

The VMA sigmals are connected to VIC. The MA signals are sedt to the system I)RAMs. The processons can then address the VIC registers or address the 1 Lidk RIM set.

These VMA lines are also uned by VIC when it needs to aoress sections of RAM. When AEC govers Jow and VIC in in charge. VMA becomes an oulpul address bus frum VIC. VIC uses VMAO-VMAT phess the wher adriress lines that are all threc-stated curling the AEC Juw.

More detail is given ma how VIC acceases and refreshes the DRiMs in Chapler 20. Tu sumumarize. VIC only uscs 14 address Frues. as shown in Frig. 18-4, not 16. It is mily required to addreass 16k diresty. VIC reccives VA15 and VA14 from CLA2, discussed in the next chapter. ViC generates the oulput bits nver VMAll-VMAT for the DR4M accessing and selreshing. The other lines nutput by VIC. TA\&-TAII, are used by the next address hus discussed, the Shared Address Bus. VIC accesses the character ROM and color RAM with these.

The Shared Address Bus

The shared Ackresss Bus is ralled "shared" be cause buth the processors and VIC use it when they ane in charge. It is not matuplexed. The Stared Address Bus is needed to allow both the pmoepssors and VIC' to address the character ROM and the culur RAM. Buth of them must use these two chiph and they are approatting the chips from different directiona, When the processor accenses the claps. as in Fig. 18.5, it sends bies in one direction. When VIC is accessing, as in Fig. 18 -6. the address bits are roming from the other direction.

When AEC is fugh and the processor is in ctorge. Uhe Shared Adklresy Bus. SAl-SA7, ix ans output of U55: the 74F245 Transceivet chip. A transceiver indirates twn-way transmission. When AEC is high. address bits $A 0-A 7$ enter the chip and SAO-SAT exir. The SAO-SA7 oxtput is fed to the character ROM and the color RIM. The culput of these chips are anto the system data bus. The higher oreter audress hies are supplied by TAR-TA11, another form of shared adracess bas. With this addressing nechanism the pencessons are well able to arcess the character ROM and the colur RAM from its divection

When AEC goes low, the VIC addresses VMAO-VMA7, also called VAO-VA7, then takes over the Stared Address Bus and proxeeds to send bits over the bus from the opposite drection from whach the processors seml bits. Yuu cunin say the bits are. driving the bus hackwards.

VIC supplier the lower order bits, and the translated address bus higuer order address bits. The charactes ROM needs T'As-TAls while the color RAM nnly requires TAs and TA9.

When a cartuidge is in place, the shared address bats is able to suyply the lower order of adkress bils for the Expansion Port. This permits VIC to address the cartridge. Should the cartridee be given charge of the system, the SA and T'A tines can be driven hackwands and address RAM and ROM.

Tu sum up: four ardfress has systems are in the C12R. First are the regular A0-A15 address lines. Second is the Translated Address Bus. TAs-TA15, that the MMT generates. Thind is the VIL Mulnplexed Address Bus, VMAO-VMA7 and its consin the Multiqkexed Ablress Bus, MA1)-MA7. There huses are used by VIC when it msust do addressing. Lastly is the Shared Address Bus, SAO-S.A. This bus is needed so that both VIC and the processor can address the character R()M and the cokn RAM.

THE DATA BUS

In compurison to the addreas buses. the dasa bass is a nimple affair. It has cight lines, D7-D0. Eiery register in the memory map, except for color RAM, is eight bits wide. Color RAM registers only

 column arditase bits.

FMs 31. 42. *4. 41, 4 4
 ithe transcarder emac. U55 has bits A7.AO entel 11 and outixuts SA7-SAO.

use fous of the chght bots in their registers, making the color RAM regasters cffectively only four bits wide. On the actual color R4M chip. U19, a 2016. rught bits are in each register. The eight bits attach Lo pans 9-17. [K(L-I]7. Pions DA-D7, bowever, corract to four '3.3h' resistors. that in turn are wired to +5 volts. This arangernent hodds D4-D7 high and effecturely out of the circuit, as in Fig. 18-7.

Whea the color RRAM is addressed by the prucessor. or VIC. the lower four bits of the data biss bantuln the register awtexsmg. The hikher tour bits of the data hos are ignored in the scheme of things.

The coxlor MAM is addressed and nybble of data is necessed by the pmeessor when AEC in high. The access takes place through $\mathbf{1 2 0}$. the 4060

switch thip. The 4066 has onmertions to the proces: sor daza bus lizes. Da3-D(), and connections to the culer RAM chip, [D:I-DO.

When AEC is Jow, the 406if swotch ss operned and the processor diala bus discutnected. Remember. VIC must also be able to accuess the coior RAM. wherein the cudes for the color in the disgolay re. side. VIC pirss 46-43 are its extended data bus. U8-D11. These four VIC pions also cutnect to the cofor RAM DKU-D3 sions. When the gronessor data bus is switched out durring AEC tuw. VTC is able to access the color RAM data nybbles.

The rest of the map, all with uncoumplaciated byte-sized registers. is cunnected to [17-130) of the processor data bus. The bus is bidirectional. The 4502 is ahte to read and write on the bas. Every focathon is connected to the same dita linee. Thesefore, all the $17^{4} \mathrm{~s}$. all over the map. arre wired topether. all the D6's are connected, and so un. Most of the time the Jucativas are dormant. Wher a loca tion its aduressed, then that licatiunt, out of all of the $64 K$ in a bank, is accossed. It is read from exr writ. tens to. The rest of the locatiuns are lumed off and do sluthagg.

The dara bus buffer in the 8502 orimizates its data bes. The buffers can reccive data frukx the bus or transmat data to the bus. The instruction regosfer is also vonnected inside the 8502 . but it is an imput only dewiere. It can only recesve instructann data-not tramsuit data in the bus.

The buffers and \mathbb{R} in the $\mathbf{Z 8 0}$ operate in the same way. Hnwever, as mentimed earber, the 7RO) can't interface directly with the 850,02 desugued bus firues. It is nemessary to use C'12. Uhe 74L5373 latech, for the data entering the $7 / 8$). The lateb convects directly to the (1)7-LNO system bus. It is abso neressary to use U13. the $741 . \$ 244$ buffer, to amplify the dota leaning the 280 The buffer chip also comnects directly to the 1 \%-1) $\%$ data bus.

Betweea the lech and buffer chups, and the D?-DO pins on the 7×4), is a strull set of bus lines ciulled ZD) 7 -ZTM. This ZD bus connecta to the lutch. the bulfer and the Z8O. The wariug is direst. When AEC is ligh. and the / $/ 80$) is writing to the nemory map, the data leaves the Z\&N, goos to the buffer. is amplified and then is placed en the system dain
bus trocs: Di-DO. Wheo the EBO wants so read a lor catuua. the dita leases the addressed locatima and entens the kitch. Thetl at the proper time, dessgnated hy the systetn clocik, the data is given to the 780 .

The chatu bus. once chear of the proceasurs. sulias off into many bramehes, An inuportant branch gnes to the 164164 fall chips. The chaps are sepperated into iwn sartions, bank 4 and bowk 1, each with maght ehups. Each trank has chips numbered (17. One stian ine is assigued to each chip in the twn banks. DU nakes two connertions, une caxd to the iwis number U RAMs: DI to the two KAM 1's. Irz to the Iwo RAM $2^{\prime} \mathrm{s}$, aad sn na. That wiry, a byle can be stored with one bit in each chup of a hank. Pins 14 and 2 un each RAM shap are ticd umether and ronnect to oure data line. Che pon is for imputting: ab bit, while the other pin uutpuls a bit.

Other braxdles of the daia bus connect eight Gines to the liOMs, the Clis. the Expansion Port. the MMU, VIC. the SSif3 Viven Contrnlere, and SID. The data bus commentioms to VIC. the 8 ans and silf) will be discussed in their reqpective chapsers apain in mare detail.

THE BO-COLUMN DISPLAY BUS

Whule VIC trandles all the 4 (l-celumn display rhores, the 8553 Viden Comtruller takes care of dasplaying 80 codumns. Chapter '2l will dioutuss the Rerxit activity in more detain. Meanwhile. the hthe3 has its own privalt: Ettle hases that bave bitle to do with the rest of the system buses. The 8ifis is wired 20 two DRAMs. L'23 and 1125 . a pair of 4416 chips. as shown in Fig. 14-8. Tlese DRAMs have nothong IU do with the 128 K of system DRAM.

The 8563 uriginates two latle buses. ane for ad. dressing l1's 2% and 25, and the other in pass through data. The addreses bus is called the Display Adeldeas Hus and the data bus is called the Ihsplay Itata bus. Accurdinedy, then tines are DAU-DA7 for the address bus, and $\mathrm{Dim-101}$? for the dalla bus.

The address bus. DAO DAT, leaves the 8563 at pins 26-33. If connects to each 4416 af pins 14 , 13, 12, 11, 8, 7, 6, 30. The 4416's are sperial 16K dynume: RilMs with four-bit registers. The duta bus [1D0. I) 77 leaven the 8563 al pins 34 -42 except for 37. which is $V_{r o}$.

The data bus lines are then split in half. [DO-1)1)3 are connected to [123 and IJIM-D127 to [i25. Exch DRAM supples a nybbbe to the data bas which, together. are the byte that the R5xak wanks in use. That way, the 85iki3 has a DRUM capacity of 16 K bytes belween the two 4416%. The 8563 operates with these DRAMs to produce the 80 colunun display.

The 8563 does the entire job for the twn TJRAMs. It suppbes row and colaum strobes out of pans 17 and 48. It atan provides their refresti signals.

THE CONTROL LINES

The mony control lines coming and gring from the 8 sure, 280. VIC, the Viden Contrulter and other thips are oxdlectively referred to as the Contrul Bus. Actually, the liness are ant indinodual with sacto one dining ita own specific jub. They are unilike the address bus and data bus systerns in that each has urany liness all doing the same job.

The various lines in the different chups are covered in the chaplers un those chips. There are four thes though that connect to a numbiber of chaps and are worthwhite reviewind esen though thcy tave the chapter coverage. These lines are the RUOW, the -IRQ, the RESETT line and the cluck lines.

R/.W Line

The best known cuntrol tine is the R $\mathrm{R} \cdot \mathrm{W}$. It is an 8502 uutput that travels to all the major chups in the memory map. It cunnects at the RJ-W pins on the cunctemed chips eogether. The entre tme is norsually held tigith by a 4.7 K resistor connected io +5 volts. When hish, the $\mathbb{W} \cdot W$. line is in a read mode. Note in the slame that the \mathbb{R} does not have an asterisk. Therefore when this line is mght, the \mathbb{R} (Read) is active. When the line is forced low by the 8.502 . then the W (Write), that does hove an asterisk. is artive. The $\mathrm{R} /$ •W line chetermines which way data is to travel un the data bus.

The fine, as shuwas in Fig. 18-9, goes to the RAM chips, the CIAs, MMU, PLA, VIC, the 8563 Findeu Controller, SID) and the Expansson Port. The $\mathrm{R} i=\mathrm{T}^{2}$ signal onginates in the 850 O instruction decoder. It consects internally to the data bus
buffers and is then output from pin 39. It is bueld hight must uf the tines as the 850? reads trom the memory map. When it is time for the 8 sive to write to the tump residents. the instructoon decnder forces the line: how.

-RD and •WR

The 280 origanhes separate read and write contral lines, shown in Fig. 18-10. The - KL) and aW' K lines cut of the 781 do the same type of pub as the single Ri•WV line curt of the 85012 . The - R() line out of pin 21 conmets directly to \cdot E: entrble pin I if the tatch U12 (8425373). When the 2861 wants to read. - RI) gees the lath to cherate.

The Z 280 -WR pan 22 is held hight by a cormec tion to $\div 5$ velts through a 3.3 K resistor. oW. K also connects to some gates and then the 74L.S74 clen:k circuia tip-Bop. This Gip-dop then ouspats to a NANI) gate that, inf fum, coanects to an erable pin 1 of $[13$. the 741 N 241 buffer. That way the -W'R has contrul over the baffer that interfaces the 2.80 data hus to the systern data bus. When the ZRt wants to write. - WR grefa the butict working.

The IRO Line

The - $[R Q$ line is an external input to the 8502 and the 280 . The $=1 \mathrm{KL}$. as in Fig. 18.11, can orignate from CIAI. VIC, or the Expansion Port. The line is helt high by a commection to 15 volts through a 3.3 K oturs ressistor. When one of the originations points wanks bo interrupt the 8502 or 280 , whicheser is in charye, it sends a low over the line.

A peripheral curnected to CLAI can send an intempept through the I/O chip. VTC could pussibly need an interrupt and would then Renerate a how. A cartidge in the Expansion Port could be the ongoתator and send a klw over the line.

Whatever the reason is, if the 8502 suddenly is inpur a low at pin 3 , then it wid gosinum its interrupt service noutine $2 s$ described in Chapter 12. 5 truyded the 780 be in charge, the low will Iraveit to pin 16. the Intertupl Reguest pin, and it will do what it mest do for the interruph.

The interrupl must be conswtered when you are nonducting machine landuage programmang. It per-

- Ro. "WR unes

 the system Fs.WU Ine at Ut.

 Foth protersis

The RESET Wine

 undentas wisen it is frat somed on. 'ihe ane

 18－12，和 for the RPSET ircmit．

 gerer itw through a NOT Geate and seat nut ireer the line．The： hige is otherwipe beld high bry 1 K tesigtor cont nerted to＋forts．

 Lever Pont，the creat Port，the Expansimall Fort ard
 low they do nof operate．They aric turced of Thein Hs the line Taturns to its，beld－bigh atate，the grow es－
 itializes the cles and pleprows it for tuty－

The G128 aler hax in RESET bulton，The UEA
 ton is a switch connected wo the trigeger phir st the 55b，If grour preas the bultodl，the connerberd partien

The Clocks

 to produce ane of the tiwo odaster frenierailes ei－

 bily to the： 1 MHz becat

柤 the triving of the hits that lyavol from phoe tor place in the computer．This leesps oll operatind par－ then in perfect syme with esctu other．The corla ac

TESTING THE BUS LINES

 ＇al a lat wit problems．Mock of the damiage is created durig the wolderiag oferations．Sometimes the．sol－

 the lug and bottom of the troand and create fadres＇：
 grolutd and in 脚 the tiny crates and crevine the

In the eafly days of printbord mamularturider
 niquese have sormataly elinntited the reajerity of these trublet Foweser，the situation stik requier

 lbe bompronte in the tur tines crold fill．

 lutus．

 thenther ind

 fent when thare are indenenter sintixi state circuitn
 grill fivat ICs banmertad．

application of about 0.6 volus. The 1.5 volts could get many transistors uperating smmewhat and produce false readings on the nhmmeter. Its best not in use the ordinary chmmeter for continuty festing of bus bires.

If you do now bave a aperial type ohmmeter to do these tentr, then one can be mand casily. It is called a low telicuge conisinuth inctes. The diagram bur it is in Fig. 18-13. The parts are imexpensive and eassidy wired logether. It will onfy push abrul 0.25

Service ctant		
SYMP ICMM-CONS TAN: PAOGHAM [QDOHS		
RESISTARCE TEST	60	NO-CO
FOINT TO POINT	mal POMNT: - MRTAG URE	ENEN
IHAKE TO GACLIM:	A 1 HESSTANCF: -ALFTLY UIISH ANLI Al KI	A TFAR: 1:1 (imolinel
TAAC: TO TRACF	MLI MMNTS ARF HITHM DESNSIANCE	5MORT BE TWEEN 1HACRS

voirs throught the sensitwe circuuts. This will problanbly not affect any nearby silicom junctions. The tester will read the two required resistance condipons. If the line under tras is cuntinucusar, near zeso obms. sben the hulb will lixht. Should the tiae be open, the hulb will sot light.

Besides testiry the contimaty from ceat point to lest pount, a second type sest is from a trice to chasses tround. If a trace is storted to Brevend. and it is not supposed to be, then the test bulb will lipht. Shoukd the trace be okay and rot shorted io greund. the bult wall ons liselt. Tabte 18-8 Bhuws the Ro'no In lest pesules. With the lester, the bas lines can he crocked out for opins ur ahorts very yuictly?

Using the Tester

The nontunuiry tester ss one of the most used wieces off test equprsent duriry, troubleshnodiny. The fors! thing to make sure of ss thas the C12\% is coum-
pletely discomenected from power and peripherals. Pull the power suuply ye phug out of the will. Alsa discunacet the power supply unir from the side of the C112\%. You do not want any cnersized circuits durisug lesaing. This coutd light the tester's balb and canse confusion.

The best place to view the circuit traces is from the top of the prantboard. The boltum of the baard is, for the must part, where the solder connections are. In the C128, of number of the clups are socketod. It as niten uscfiv to remowe the socketed chips. With ereat care, to get a gond renstance cent. When the chips are out of the way, you are sure that the reacinges ire of the board wiriog and soldered cumponemats undy.

The first tests that should be made are point-to-pciant continuties. Once the 16 address tunes, the enght data tones, and other bus liness are elonred for opens then yers cale rom tests ior strints. The merthod
is ont as fowiproof 25 finchag un open troce, bus it is worth the effort. Measure the resistance th ground of all the address and sata lines one by cooce.

The results should all be the same. All the srane: to grousd readmes sjoulde be a bush sevistanco and got 'aget the hatib unde: imirnal atramstations. Il you utse an ohmmeter, then there would be a hight resisfanoe at each tracc lo ground, and there could be in stight variation in resustance but still a very hieqn resistance. Should you fond one of the traces grite differens than the other. then thar could be a valis clue that the troubte is nearby.

Iocate the circuit anvolved with the trase and with the aid of the Master Schematic. A reason for the differmoce in the resastance to ground is possibe in some odd casc, bul I hoven"? encountered any m different models. Chances are, if one of the trues show a dramatually luwer resistarice than ats cotu panions, then you have pinpointed a short that is causing the trouble.

Once the resistance to ground of each trace is fested, check the resistance between Lraces. Here agaius :here shouist hee a makh resislamse between all tracel. Should you find a low resistanne or a sbort indicabion. this sa a cluc. Probabiy scanc sort of short. Bee a sliver of sululer. is between the swo traces that has developed the low resistance.

Bus Lino Writing and Reading Teats

The conturuity tests can be run under any car-
 discommected frum 3 ill poweer and peripherals. The continuity fests are rum on a dead computer. The undy energs applied is the tiny amount of current from the lester's battery. They are the static lests.

Dynamer tests are ruw with the computer energived. When the C128 is operating but is not adAressubs wherls, or is delivenng smarrect data. yous could use the writing and readiug tests. These are the BASIC PFiFK and POKE tests or the Monitor's MEMOKY and FILL rests.

Earh bus fine can bee tested individually. For example, if you want to test a particular address line, all you bave to do is addrean an key Jocarion, write scom- data lo the regisler atml ilwen read the corthents
and seee it the dats dide medect arrive and get stored in the location. A key lucationt is a repister that needs the address line being tested in the ridress bits. 'Thas way. the processor sends a higgh over the suspect address line to upen the register. If the register nesponds, them that andreas tine is ulay. Shoukt the regaster not be reached, it could be hecausc the suspect tune is opern of sherted and camol camy the zudtress bit.

To review, 16 address lines teave the processor. Fach line is capable of transporting a hiph or Inw. Actually, only haghs are sent. Witien a line is not carrying a high it is considesed as caming a low. A line, therefore, is deensed ckily if you ran send a ligh successfully trom the processur to the mernory lucation addressed by the high.

Table 18-2 sbows the addresses in fecmal and bex unat send a hugh over one address line while all the rest of the address lines are camung lows. Therefore, if you ousput an addreas on the bus that has all lows sexcept for the copper trace you wunt to (est. which will camy a high), mad the address is gocemsend. then that truce is doioss its joh olkay. If the acidresi cannot be accessed. then the trate berng testad is not Lransporting the hight and could be the scat of the trouble.

The addresses in Table $18-2$ resi ome address line each. The line carrying the lught is the one bemg tested. For the address bus sest, it does not mat. ler what combination of bits yous send to be stored and then read. The addressing exercise is the lest. sout the data scut

To get the akliress into the urachine. All ynu need to do is use the decarnal looke for the desired linary bit address and. in RASiC. FOOKE the address with any byte of slacr. If you wans to use the Mumiter. use the hex code for the binary address and
 line to be tested.

The addresses shown ane anl in RAM. If for sone reasom you are testank an mhtoress that lands unt a R(IM shen you can dispense with the POKF: nr the FILL. Juss PFIEK of MEMORY the address and read the contentlo. If the contents make seme. thes the line carrying the address high is okay.

Thove 10-2. Acldress Euw Tant Cher.

TEST Poke (Ccpper Asdres: Lue)	Binery Addrese	Decimal Address	TEST Post
40 A. A $+3$ 4. 45 At; A? AB A3 A 10 A1: A: 7 A. 3 $A^{\prime} 4$ A 15	B100 0003 $0000000:$ 50000000 uter 3019 00000020 ami blot 00000000 5800 1000 $00000000250 \cdot 10000$ $00000000 \leqslant 11630500$ Q000 0000 1950 0":Y $0000300:$ स० ก กดา D000 0090 0.100 20\% 5000 0100 (nvel 500 c 20001000 ח403 500 00010000300080007 00:0 0000 0500 30:2 1000 D000 3010060000	$\begin{gathered} 1 \\ 2 \\ 4 \\ 4 \\ 16 \\ 30 \\ 65 \\ 1019 \\ 264 \\ 512 \\ 1062 \\ 21.48 \\ 40.65 \\ 9102 \\ 16384 \\ 30588 \end{gathered}$	RAN โ.à DलM 2लA s.aps RAM RAV Hias MaM Pass Ham नABA RAM Rass Reve FAAM

Table $18-2$ shows the birary addresses, the decimall code for the binury, the hex code for the binary and the type of regzster If lound in the C125 for the ick examples. In sewer C'128 roudeld, there could possibly be different chipes at those addresses. Checks the memory map of your muchime.

The data bus can be tested in a sinvilar mannes. For the data bus test, hewever, gou need to produce eight clata byres that have all lowss except for the dala line tessed. Tlat line will have a high.

Table $18-3$ shows the erght byles uf data that wint test eachl data bus line. All that is nocded is to POKE ar FIld. the cishl bytes into any group of mghs KAM iohdresses. Next, PEEK or ME.MonRy the eight bocationas. The tisplay will show the resulta nf the tests. If all the wriiten bytes are nomectly irtstalled in their asssigned hocatoms. then the data bus lines ane massizut the data trom the prucessor in the locatioms okay. Should one ar more of the locatcons not contain the currect contestly. then the ilaes bus bree ur lines that weer lo carty the high tio :hat lochtom comba be shorted or open. If there are arbl ticcties. buffers. gates; mutiplexern or any chitp larke or stradil in the indmonred face. that are sappoused

Table 18-3. Deta Bus Toat Chert.

Coper Outa line	Binary Dets	Oecimen Data
$\begin{aligned} & D 0 \\ & D 1 \\ & 01 \\ & 03 \\ & 03 \\ & 0.3 \\ & 06 \\ & 06 \end{aligned}$	axen roor Dan 30: ave: 1100 OCO 1 (De: 0 CO 10 c 010: 5 mon 100: (000)	$\begin{gathered} 1 \\ 2 \\ 4 \\ 8 \\ 8 \\ 16 \\ 32 \\ 68 \\ 128 \end{gathered}$

In prass the bita, then they ame also suspect. Fior instance. if the binat bye 0100 MNON) did act arme If its addressed register, then datia line INi mould huve trouble.

Control Buy Tests

The lines called the C.uatrof lsus can be andyzed in an inderent way when the writink and readang tests
are performed in BASIC or in the Munitor, For instance, PEEK is a functico that sets off a BASIC ROM routine that ready an address. POKE is a commaved that sets off a BASIC ROM routince that writes data to all address. If vou ran successfuds write awd read to addresses, then the $\mathbb{R} \cdot \mathbf{W}$ line from the 8502 is working okay.

Using the same reasoning if your car enter CPiM then the RD and $=$ WR lines in the ZRO are okay. The exercising of the usual procedure shows that the contral lines insolved are workint, Should one of the routine procectures fail to perform, then you can puasle sut what lines are involved in the prixces and romsies them suspectis thl they can be tested with the vom or logic probe and be identified as oksy or not.

Pecause the control lines mre all individuads, the beyt tests for the control lines is to find their origmathon and destemson places and test alouse whth the legre probse, Etart at the anginatron point and prou reed siep bey seep tu the destanatior. Yin strould be able to follow the line under test and reason out whas 3ogic state should be present.

For example, suppose you want in trace out the NML. The symptom could be: when you press the RESTORE key iwothan happesse in Fis. 12-19 in can be seen that the RSTK line comind from the RESTORE key is heid high by $\{$ R. a 10 KK resistor, 00 + 5 volts. If you louch down there with the logic. probe then you will read a HIGH. In secrics with the
hoe is U16. a tngger, and U37. a NOT pare- The trugger has a NOT circte. The hikh goess lew but then goes high again after the NO7' prie. 'The bre should read a HIGH then after the NOT gate.

If these readingss are okay then the mext stop is the input of the 5556,1327 , pian 6. Accurdings to the 1.27 Test Pomt Chart it siould be shigh. If it is then test pin 5-it should be a low. From thecte you encounter a section of 1229 a NOT gate. This inverts the low to a high. That part of the line to also hacd high by the 1K resistor connected to $\$ 5$ voits. From there. NMi goes to pin 21 of CIA2, the Expansion Pors, and pin 4 of the 8502.

There shoukl be bighs uns all three of thene test points. If you find a wrong lugix alate somp where along the test path. then you have just passed over the troublemaker. 'Tess the parts and check the connections there and you will probably locate the bad part or compection.

When you are signal tracing in this way. yuu have the aid of the Master Scthematic and the Test Point Charts. When the pathway counects to a chip with a U munher, double-checik what logir state should be present on that gin on the Test Point Chart. Somelimes the states that Sook like they should be present have a clrcuit quirk and the upposite state is actually present. The Tess Pout Charts will keep you straight. When troubleathcruling, a chue that is not a chue conld casily appear. Than't les onc fonl yous.

19. Complex Interface Adapters

TWhe Curoplet finteringe Adpter ispackedged as a 40-pan chip. It has the job of interfang the digyItal gixclilits with all of the external devicosa thet the connputer has tid deal withs. These arc mpata suth ss the kerboard and foysticks and ounpults the the serial tus and liser port.

 lerflace with the retat of be digital circuits by giongly athrehing burfered pathwars tad lexgin operations. Urifurtunatrys, the varivus pectipheral devised do not
 KOM. The gefec camof just hicesk into the external devices. That is where the CLAn pone in. The Cla lies addresses and ar 8 -bit data buts commention on the cormpater side: 'The addregs lines and the data Inas connect to the pronessor just as the memory chips det

On the outside of the Clld, there are twa byte size busea that interiace mitith periptheral devides. llo-
 the byrley fom the digital ciuruita, take calre of an
miannasching, and stincoth the way for the atreama of data to be outpurt to the periphefal. The two sull-
 Horwitid the dila tirough the Cla to the internal data bus.

 reccires parnilel datal from the intertid dilatas whd converts ai to a speciol outpul. The outrut leaves throught in single piat. Ther serisf repigter tean also han-

Tr mathition to all that L/t worte, the CLA is 3 doxindy hittle timmen derice. Il. has repisters that act ats interal timers and fiture regroters that jorovide an thours-minutes-sccondr-kentlle of scoond real timse cluck.

ADDRESSING AND CONTROLLING

 Thes tie intw address limes minh A3. Three addres

Tines chorabe angorg the registers in the ClA There are fruer hate thall can select from 1b tegisters; The

Tramditixn to the meremal iddressing of the CTA. there is a chip selectlat paid.23: "CF. Ah lou here will aind in sele eting the chip. The signal for the thip bebect comes from the decroded siguals ont of the PILAA and in accumpanyine chips Master schertultiv, The

 ifatic of lave data bus.

Whene the *CS is fow sad the chack is high an the sampe tome, then the CM will go to wort with

部
 not acture what the compuler is opetuling. if the
 ral registers in the Clat will ber resel. The IVO pins
 zero. The timer conltol tegisters, are made zero and
 reyisters are cleared tio wero.

INTERNAL DATA TRANGFEA

 manditienn unlid "C: is low and 中2 pulsers high at the same time With the R ${ }^{\prime 2}$ Wh linc also figh, the dath
 fors and call be read by the drane.

 the line hate a a munher, of intermpts connected tor-
 the imberrupt acts at diturribed later' in the chapbeer

TIMING

 made bighl for acead or fow fir a write: the Fis pirs reteive a reqioter adreses. and the data fors either

The coutput pins 'in torn rlice data into the Clif for a read uperatimn or sedr data notwarl if a write
 pram. The diagram is confusing at first ylance; bat

The do chack cytle wintrede the timenay in the
 ma, This toxirtiles milth the nevessing by the s5nd.
 lpye runs 420 Ins. The rise and all times are 25 ans tath

Write Timing

 each sientil is micazured, The wfite operation begitis

Mcamende A11. As. AB enter pins 3,2, i. The

 uit the two Class. The sigrain will entble *CS whetil hnw.

As the write tyde begings, de gowa figh. For

 why throlach the PLA and decmeter, Then the gignal

 then rises bin a bight.

While the chiti selectivas is joving oin, ille repisisers that are to rective the data are oldresset:
 in the CLA by patbing afdreas Vits into pine 35-38,

Also during the de litgh, that Bryde semd the

 of the if locatrons. Vallo ofte cen than be fotchod ees कt lalts.

P它以ロER

Oner the chip 佔 sebectod，the resired reguster
 Gan be written to the CL＇s，The data lenwe the proce lie detair bus pine pl tre chat，It errives about half－

 the fletn hodel lime．

Metarwhile．all durine the sfoperationt，the data output ping ore watiry for the data to be reotwed by the CLh and pases through it and etwerepe tod the

 is plenty of timec for the calta to pet traxakb and oor

Fitad Timing

Then the promerol wimf to read fonm tue

 280 탕 during the wh high in the stare way．The ai－
 setup and hold tivelta are atso the shorte．Hywever for the read crocrabon，the Ri＂pr gots hiyb iontrand of how

The read operation bepint slaghtity belore the
 ulace betercive data fron the peripheral．Thes is

 Ebotk widl then go bigh．The duta totera tre Cla throwgh the protto＂amid ready to be rejed by the procestine，
 The Clithan then be sulected，and the desiren rent
jeter ran be addresmed．As CS in forred bown a 24 th
 diatr bur but will not be valid till that time elaphef
 elapsen，the data is valid ant man berched hato ther

息

 （datar must be valied．Hif any ot thesc requarmente are
 devica the the Cl4 and owe the data bue into the HFI2．

16 PORTS

 Para．ala work on the cocrumter side of the C．EA and
 perspheral sible of the cluth there are the pinis that kenp in lonth with the extersel devicep．There are
 Ewatigie the ports first，

 untersaly threugh bitg enteriag RGi－RED．The first

 remptery that coprextr elbe ports，There are two

 Ahatime．

 E＂Fs bid

 1urtis illo

 the irgat of dutpot mende of the Flles．lyuring it reat虭eration，the PRs are inpuls atul witi bith the in－ coming daka fonn ther perspheral．For a wonte opera－
 righl tan oull ta the periphetal．

＊PC AND＊FLAG PINS

 ing तato from a pertheral or sembirg data to the puripitbral．Hand

 as the thatwaing talen place．Pion 18，＋PC，and

 ternal data bue of the CHhatal，therefort，to the 远 puls of both the A and $H 2$ port ctraits．＂Fre ta

 for ne cyrle after any read it write of the B port． Kefer to frge 14－1．Lluring hoodabahingr this entor

TINERS

 the TIA．They need liur addressed singe lbey ate

16 bitw each, as Fing. $19-5$ sbows. Timer A has an B-hit how regester and an \&-bit high register. They laze addresses of LIILL and LHLH. Timer B has a simitar arrangersent. Addresses LHHL and L.HHH confacts the low and ligh bits of the register.

The timers bave a number of modes. They are very usefal in lote of apptications. They cam senerate lung time delays in a program, handle different width pulses, pulse trains, and waveforms frequency changes. They can coutut pulses, measure frequencies and other characternstins of pulves that are injected into nin 40. C.NT.

Each timer is combrolled by monther register in the CIA. Timer A is controled by ant 8 -bit register at addrees IIIHIL. Timer is as controded by the register at IIIIIII. The control registers nan the timers. The two timers are similar in operation bot not ishential

The timers need two addresses because they use 16 -bia registers attached to the 8 -tin date bus In order to read or write to a liuser. the 850×2 frss addresses the low rendister and accesses it. Then it ardresses the tagh register and accesses h. Actually each tumer consists of iwo 16 -bit registers. Conn

 reconv :thmir data il pir 40. COUNY
is contarted durng a worte and the other when the processor thomes ar remat

The recaster that is written of ss a bucts The regaster than ts read is the umes itumeer Arivithisug wroter so a 16 . 4 it tiner kxalien becomes latibed.

When the same address ts read the processor seceives the curnent iontents wit the timer conmies. Here agam this action is important to the programmer. Fine serowng it is anly uf value :o thave an inea of what these registers do.

AEAL TIME CLOCK

There axe four regaters in the CLA that act as a reall time clock. They are shown in Fiy. 19-6. Inurang artual programuming applications. a reas time ctuck is often weeded. This one has four 8-bit registers to handle the timekecping. Address IILLJ counts

10ths of seconds. HI.d.H takes care of full seconds. HLHL is the minute calculator and HLHH is ure AM.TM houry regaster.

With these registers, the CIA can do 24 -hour tirming with a resolution of 10 hhs of a second. The four registers are an ejectric doch. Like any eles:-

tric phack it is phuged into the plectric cumpany and aser the 的 Hz triluge to time live clock．That tis，的 Hz ith this country，other astianis could use on Hz ．The en Hz conme fron the power surply and enters the chip at pir TI．＇TOD；time of．davy．The 6to Hix sifnal driwes the tuatal in the registers．

It in alag in atarn clock The alami can be pro gramulied to parserste an inlernupt whenever it ty． freened．The alarto is cowducted by Eome other io－ ternal refistern：Theme rrgistery ate at the same sal－
 fur timet Es can cpen ap the alarm Tegister．Bit？ pil the coultoll regigter（IFing．19－3）．if sel to a high． त्ञllows you to mike to the alarn tepisters and set the alarm：When bit 7 is low，addregeingy the cluy connarts the duek hatad not the aliarm．

Using the real time dack regoters is ancomb－

 whing：The gervicer shulud bew swart of the dicich

INTERRUPT CONTROL REGISTER

 go to the yrocessor arte wital to the operatices of the

 Eard type of interrupt is itife la set one fivit of the TME
 the addreze are two 是－hit rigisters．These in one

 Tengster erontination thit is the ICR Ende nt the firc：
 the 1CR．Ain infernpt pulse fromitity one or thare
 repster

 ther let the internupt through of lidock in onft．When

 as described ia Chiptar 12. ．Strould the masse biat DSt Wex the internuft tpass；that is the end of the inther－ runt

The fyge circurts and their respective＂tant posa－
 0 barvder underdlow fron tinser A：bit 1 handlest the underthow from liner E：will is wed to contral the
 Whatheet of fint the acrial data repglster ks fulll ：ur
 bufter．

Hisa 5 and if do net have mash uec tual lill 7 is supprianl apd trieky．Hit ？of the Mask respater in
 type job on the indiwidual mask hita．Suppose you
 The repigar will thet giace loush into any nexask bits that tawc thights．Blits that alix：ady aft？bow will me muicir fhat way－

On the cother hasd，ir you wrice a hight orio tit

 must enher the Lhata register and seit its bil．The Data register thet check the comespundixy Masly

SERIAL DATA PEGISTER

 plete ItO port，This th the serini Fort，SP．Il wor－ uects to pir 79．Traside the chip the pom ta atiuctbed to the Sif builer stage and then onto the setrivi prom

 a mift reginitr．fit whnecta In the inlermiti lata trug

- IRQ grolow. The shint semister tas its parallel side commetted to the eaght bit data bus and the serial sude to the Sif buffer. It also attacters to the CNT buffer and the iwo timers.

The scriad purs cas be placed intu an input ar cotpat mode. Bit 6 of the comerol registes A sets
the mork (Frg 19-5), If a hugh is put in trit 6, the serial port is an sutpur slage. Wheen a fow is placed in bit 6. Whe port acts as an tryput

In the input muxde. the (C.iT nim 40 comatruia the operations. When these se data cumind froms a pernpherad and is warting on the St pin. a riving edse

 CWT putser the data in the stifl fugeter ie tranc－

 8502 tider ryet fom there．

Whan the port is acting as an ontput，th feeds

郘
 A．
 by wribig to the serial data Teppister．The valy I．E－

 tive byte murnut with mil 0．

The 渋day ONT palses si byte is rollquuthed tu ipripheral．A that licur the sp tircuit generalles an internat and
 rupt is decigned wioll the procoseme thal the previl ther tyyta has been tramquithed and the strial registict各 ready fow the bexd tytc，if there is phe，

 When there is bu boger any data after the eipolb
 sill crame．

DPERATION

 tane．＂Thin is to conleast to the WIC and 3ID chips

C直 1

One or the thin as zased to rewive the Ecyhoran －
 troll parts－Nefer to Mitater Schematice Joysbicre and

 buand ard the joustinfore are warally not made ta per－

 flo rat inter［出T，Even if both were setivated al rame． Unere prohnllyy

 nected dientuly bo cight form of keyrs．Pont A

 Egure thene cli fort pins．It wriles wa the Iota ［finetion Registet of the prorts and mukes the rew
 \％

There are sind rows wifed indernally an the bey－ boated．The miring bears sto resemblace to the

 When you sitike a key，you csiact an short between

The way the betmel does the as by scanring the
 registers．The decimal addrest of Port A to the

 are arput ar poith B．Bits olv of port A sill ontain the slate ol catum bits il－7．Bite 0．7 of pait E prill

 will formy which collam or hate wrillem lde and which row whe shorted．The rag and colcman infurgeat mata

 should be prosunt at U1
 Failue of the cloced key.

While motat of the por pirs in this cla are used for the keghoatt and fryatick type inpula, the serial

 Seriai Btis ind the cassette intertwa.

CIAZ

The ather CLA tustes itr parallet offpul port ping in entirely differmal trpes of dperationt. That port
 prot pins, C_{r} D, E, $\mathbb{F}_{1} \mathrm{H}_{\mathrm{F}} \mathrm{J}, \mathrm{K}$ and L . In adition,

 Shater trichematio.

 additional ping bit Pht and "FLAC permits the prodmmose to ige the pari Pa pegsler' ai a hand-

 How guss tr the uger porn.

 Whit ilan are cornheled tu the sanal bux. The sterial

A. protgramuer with the id of the prot A piens,

TESTIING

The than the pertarma lot of comple Tho jabs. You can test ho sec if the Clissate set up to for their theties by probsing the Clh pins rave by ofte with the

 Whin when the romputer ia lirst harned of and disa DAys the RENDT 파 Tit in mot recessary to knuw il you are teiding a port
 compare the wollage or logic itabe foa fexd with what shoud be there durina wifinal aperation.
 that doen nof tiratch up with what stripld be thare, luat ciruld be in palict servite ther. Then it is usefil
 crepancy. At that fime, you fond out what pin je was Lhat hith the prongy reating. Fisen ifyot have an den of what the pan it roing ard lew the raract imodved

 trouble.

 understanderg of the wratings will affur you to come蛆 such a Eurnllusitat.

20. 8564 Video Interface Chip

TW Wided displays lot compaters are rebainely Dew, fin the dars before microcompaters, the
 atherboard aind prinker'. The Eeytorm was the 血partand inpuas nad the froutter the main matput: There
 Werte used mesty for sperial fritpumer

 Fontred the step-by-gletp comversion of digital bits lat

 WTC watemen, then lideo liter木tace Chips, In the C129 i5 one of the falest in the lire.
 WIC used in the cigy midothe, It conlains all the cir-
 the C12
 Eweta lat lit wark with the G12S gunde boo.

 if car input ard gutput the cxtra fetures. The ribes obvicus addrival fentures of the sear whe ate Wh.

 cloc: l . plus produring all the wations yraphen wed in 40-celuntur maje. The Bi-criburn mantie is produref by the wher riden output chip: the gras whytred in the wext etaptur.

YIE GFAPHICS

The word "graphics" ifoludeg every trye uf
 are the aiphatzumerba, the alplatet, oumberg gut symbuld that appear ate yor type an the feyboart 'Then, the drawimgs, cusenm defoied haracters and sprites are ontput that the crest is afle to develop.

 Lake wo prerwiev of what buppets when you stalke a key joine it appears on thex screer

 condes for the ctharecters that are lu: appear on thet
 is caled tider RAh.

 25 down . The wideo Remin natchers up with the loik character black on a cme-tormu baisim. Eath charac-

 be tursed on or turned offiry vic, This mated each

 :illy convert the video RedM onde stomed to nechatic. tor is a chore that TIC and we charncter fom take
 to display. the chnometer. Eath charater coles up sikht ROM byter. Eight Roth bytes make up a bit

 WIC teroen the corde from RAM, and acconting to the
 jt

Wic scars the Wiiden RAM 68 limes al serand and picks up all the latest thiwacter corfeg, It then jilnces the outreal characters imp their sercen

 Estrent

 mentire disyday block as wive. Jin the block ture wote.

40 characters ardiss with eikh dutia of fight ler cact.

 of 420) 200 . Thie idriatual (fots of light are the

 split pereeti high reschation. This io. quite arke ther

 orides text with the prapriiks.

 tece lumels, the resolution is redued to Itol x 20 pixels. The worde alme has il cumpannon spall skruens wode to give you the crption of havings知crit windrait it the britum of the pietura Ean?

Hossides the WTC type andeg: lhere are more
 Controther chig. These ate dincussed in the next

WIC PIA-EYPIIN OPERATIOM

YTC hay ixdressess it thant Erom 5:3218-5
 the prexesear throwh adiress inges A0-35. There

 dr. [Jnes Ald-fls arrive at pins 32.37 and when the
 loghe probe shauld show thern all with pulises. AEC will mhow al fulse tars.

 to keen oudressing the wider RuM wo treara undat.
 riplexing of the video RAM addresping. When YTC

 in widee RAM. The multipleximptallowa the piss to outpat 14 oddress lines, eight for ritws and sixi for

 yspe fins to senct buls treg giher way $=$ outress ucen fial
panced on eigela 16 K unden banks. WK can atdress any une wif the batiks The vifer R.A.M cas be ill stailed in ant herered bork. These adiress pans sbould reaci palkes on the froghe jirnhe.

 tuad tom en wrute in the regisiers. They work omb when AEC is fugh.

Slere data tines conve froms VIC. They are nt

rast data innes used fonly by V'R to access the color RAM. Color RAM ras only witpu! a color nybble
 sme relathosship with the viders RAM. W'ren SIL gets a thote trum sudew RAM it atse grts its corre

 15 condurg firt the tharacter block. Then pure fines showhill all ghow pulseg ler.

The following are examples of control linew that

 14 嘆 the * wifos the curatrol that deendes the dilitection the datas
 tbe procéssar. The "Flhs line is out of V14'e pm Ig bout prowider the tow address strube fur spsten
 From pisn 20, that curilithutes the cohmm ouddress sitmber for system Ruill,

 the ${ }^{[1 R G}$ interrugh siggal fremm viC that lets the processhr kucisw an intermut is happenimg. Pixally the dock pultieis leme theit migiguative circuity in WE Hown pian is. the 1 MIE duch leaver VIC. Ther
 280 shmer erarges from pim 25.

 circtite that are supplyite the pulse.
 thret pins hesd to the Keyboard Contral Ecisister

 been pressed. Thue pentrits the keytonat to be able to be used in beith C64 and cizas modes.

If yeur read the three ping with a lagic probte, thom will alll show fichw. The three jins consect to the three lowier bitt wif lie revister. The othire billis, 2-7, wet nut used in the C128 we lar, They do not convect tis pins. Youl win read them with the Monitor MEMORY command at with a PEEK - If yan do they wid be tornut for be fuet high.

 logic proble will read this yith as a hid.

 an will finish its current oprration mou then chu:山lown. Thia, makics the systetmburs lowes avallable for
 B pulse cult the layir probte.

 source sad yrivund.
 "Whec. It tells wic that an Ito actergs ianking plece, task VIEf, should sexomindite the arceas by

Pins 20 and bla ane the whe tomections to the ithery chip distussed in Chapter 17 . Pin 29 is the

 Dot thock impul fuon the chatk chap and is the the: quancy that an the teat bot the system frequariter

 The pan. 17 natpou gues aldrectly to the RF Mitcoluth-
 paiche under cortrin- -pectuling conditims. these pins
 ered later in this clluytiter.

WIC Charaeter Fetch

 pus are Corvona anc Syncilcuman:o the produce tho coloce Ty display
 the saine in both the C138 and C64.

The start achlress for VIC is 53248 : registes 0 . The bast addreas is 3 2296: ragister 48. For a character texth. repjister 24 (53272), the VIC memory counfrol repaster must be contacted with a program troe. The delas ic form the vade: Ruth and charariey R(val oddrcases are in regisher 24 . Bits 74 comtain the sideo matrix base address and bits $3-0$ have the character dot-dat base address.

Video RAM tunst be addressed by VIC to obfann the character pointer code bits. VIC uscs Id muluplexed addiress buts if ancens sideo KAMM. The 14 bils will address 16 K of the total RAM. The RAM is atranged in $16 \mathrm{~K}^{\circ}$ banks so that VIC can accuess with only id birs. All of the chips that VIC aeeds, such as the video RAM, color RAM and character ROM. are arranged so they appear in the 16K bank that VIC will use to produce the display character.

VIC bepins to put together the address of the character pointer with the aid of register 24. As in Fig. 20-5, the highest four bitse of 24 are the address bits Al3-A10 of vidco RAM, VIC outputs them as part of the address of the character in ROM.

Meanwhile, internal so VIC is a counter regisfee that has tea bits and is constantly counting from

0 to Syy-which is the 1000 siden RAM locations amd the coerespondank loxn TV rharacter bioxics cin the screen. The ten bits from this coanter and the four bits from register 24 form the address for the charecter pointer. The counter is comstantly scapsang the 1000 consecutive places. When a desired character is needed by VTC, it outyris the ten axiditsomat bise brough MAO MAs of its address pans. The : adco RAM is accessed in lis: manner and serves up a copy of the cight bits in the pointer address.

The next step is to form another 14 -bit address so that VIC can access the character ROM for the eught byten of dot information to form the character in Lights on the srreen. The sakeup of the adedress is shown in the buttom register in Fige 20-5. The three mest sik:uficant biss nit the address aree femad To register 24 in bits 3,2 and 1. VIC uses them as aukdress bits A13-A11 so point to the character ROM. The next eight bits of the pointer, AlD-A3. are the bits VIC has just fetched from video RAM That leaves unly AZ-AO to be filled in order to form the character address that widl bet VIC access the character R(MM

To review, bits Al3-All are the charactes ROM select bits. These three bits arc found en VIC's own register 24, Bits 3,2 and 1. Bits A10-A3 are

the regster select to choose from amung the 256 characters in a set in ROM. That leave N-AO.

A2-A0 is a threer-bit cummter. The three hits can count from 0 so 7 in binary: 000. (001. (110.011, 100. 101, 110 and 111. There are eizdr bytes to one character. As codr ROM byte location, the coumer points to each byte in turn till all eisht bytes of a character have heen addressed and ancessed by V7.

In the character display modes, the outivity can be summed up quirkly. VIC starta the menory ac. cessing by frist rendeng a charracter pointer out of video RAM. The pointer is noe byte in width and is an address. The address is the start locatioun in the character ROM where the desired character is stored in caght bytes. The counter contunues to ad. tress all eight bytes. The 64 bits in the eight bytes
that contain the character in highs and bows are processed by VIC to light up the 64 duts in one of the 1000 character bloctis to farm the charater. The higes light their respective dots while the bows extunguish the dot Eights.

Character Colors

In the oolor RAM chip that alllaches to VIC through four data pirs. the registers are arranged to have four active bits. The nther four bits are disahled. These sybbles ctemtrul the culur of the characler that gets displayed. Hecause each register has four uasable bits and four bite can have 16 combinatiuts. each uyhble ran mode ons of 15 colors.

The volor RAM has 1(XX) of its registera assigned ma anc-to-nac basis to the 1000 bytes in video RAM. The wiring in also arranged so that

 at the sithe lirne. It is as if the video RALU lias 14
 Fint for cotarily.

 WIC twen procersses all 19 bits.

Chatratter Modeg

Chtractern are diepployed lyy VRC in fure diller-

 on your Limmondoce 128. The uprating syatem setr.

The YTC will wiops 白 specific churscter mode dis threc bita in ita repisurs aide set of cieated. The
 7owing thare bite are affecterl efther by the opeted-

 4. The second fat is walled BMA and to found in regr ister 17. bil position d. The third bul is called ECM
 to Fig. 20-6.

 eighl byter of a chartater mo fotrben by Wic, ar
 ofl exrih character surace sid the screen,

 40ceirell ly he programume.

	slandard chara-tior Mryde		Ex x ck 	3ri mesp rimale'	朝니․ corpror bit midu rathe
EFCH	L	L	H	-	-
B.ant	L	L	I.	H	H
"4040	L	\square	L		H

 contry in．Etwh charather spare Hipwercir the reso lution of the chararime extidera with the addtional

 nal borizomal sixp－The chutuler is rult quite as

 selectiva ul backgrourd folure Jor teach character

 pramaing bowk that roviere the FTC Front fits ncint तl

日信 Map Modes

 RAM to get a characeer gointer，This wa an an－
 character．The character wha motallod in 64 践ht

 diat iv a I ，the hat Roc：off

 the suretir Eighe hita ke a byte merta thr bit mith numbe हexture gow byteg of memury for the． 6nstrul．

 in the therrater mode．Howercis thre yIC bs mot

 From repister 24, bit 3 talled CIna, Mefer bo Ficd.

The erderessing of the lutur spaces an the

 sface that wion eath dot 估 individually addrested.

 is obtained only from the g才, ge of the indiwalluid dels
 in tlus bode.

 addrexs of the apper left fand aphoe oh the sareen In bit may modn, this. panter becomes the botor punIroiler of that gingit buch There are cight bita in the mamwry pointer.
 bre and Enar latrer bits the fow bits theh betome

 wode Nar athe bild in that betk that are trent to 0 .

 ol asore colnis hem price to be paid tivi, Two bits arie used turelect the colors and the size: of the

SPRITES

 fewt lanker The Mibf is a charater: The Mog is out foumd stored in a Fohl the the kefthud charetag MOBs ate doncemed and desiderd by your

A MOB charatter ig neen an the kotemim a 24 m 21 dot armuppement- This is much larger then the

 ter requites.

 ran be niag giry and moved arourid. The abitity to use the Mof with its graptic coputhilices maties the

 thare mre a for of bewk ot the subject

 tharacter. Tincen bytes dociaim the dot light intor-
 Mof, the omplete charder requmes ent mytes to turte all the dots on and off,

 53 byte wharacher and an six bit opunter that staptra

WTG protures that connter trom an blemial regreter, If

 and one $\%$ register for eachollthe cighat s.ariken; The YTC Users these prositions with referebie the the upFer left hand ixchatr of hee Th screve tr frobe the MOB Lat atw wrocm.

For the athal teratng, Whe conisiders lhe TV

 y phoswon front the MOE registern fier bath of the

$$
\begin{aligned}
& \text {-100 Rop }
\end{aligned}
$$

도pule	P-8,
-	x
家	Y
\%	d
1	4
2	H
2	π
곤	\%
7	Y
4	K
4	Y
5	M
5	γ
B	x
6	Y
7	x
r	Ψ

 Furmation to the Thr face.

Kegroter 21 da Fig to-2m, in the WTC is the ofl-

 A to mill tum it off Regster 28 sand 29 perform the

 prianjly to the acigenal stisplay.

There are all nimts of Erick ymu fan with

 ill these working of the Whe fote stweing in wase 4l featura faidrs. If if doces, ymu will be able tr pinpoint
 If supporad to be iperating nowlitally.

OTHEA WHC FEATUAES

The Vhic renisters late sonte other whs that

the nurisual display mode. If you install () in the bit, the screen will be blanked out. When in does blank out it will assume the color prescribed by the trits in regisler 32. which sets the exterior cabor.

The usual display paftem pa the screen is 10001 character spaces with 240×25 haynut. Bis 3, CSEL in repister 222 and bit 3. RSikik in register 17 is normally sel with l's en produce this arrangement. If you want to change this to 38×24 install 0^{\prime} s into the birs.

The VIC provides either vertical or horixontal scrolling so game characters can be casily moved arround the screen as programmed. Register 22, bits 0. 1 and 2 aroves the lisplay data an entire character space at a time in the horizomial prosition. Registes 17 . bits 0.1 and 2 moves the display vertically.

Raster Register

Reygiter 18 is the raster reglster. The raster. of course. is the lines of light on the TV screen. The

VTC phaces the dasplay precisely onto the limes of light. In order to do this, the VTC must know whech Sot of light is being ili or furned off al every instant of time. VIC is aware of the dut linming.

The raster segister keeps track of the current raster possition. If you read the register, the lower eight bats of the prosition are found in the register. The mast significant bit of the positoon is then found in register 17, bit 7, KCZ . This data is used hy मougrarmera to make linumb hangea in the displas to get rid of dicker. The changes are made while the border is bemg scanned by the CRT cathode ray and not durring the display window. The changes are made before the cathode ray reaches position 51 or after position 251.

Whike the raster register read ik useful to elimintre flickeriag in the picture, a write to the raster repister, ixchuding a wrive to tut 7 col register 17, performs another joh. The data written gets lauched in the revisters. Then as the position of the raster vo
the gryen changer, the positive of theremer is com-
 of the rakter biccorsen the samm- dit the tight butw register IB and the MS bat in fegibiter 17, an inter-
 regrister.

Interfupt Regigter

 3s. the Taster possition than fias beer letched in the
 6sion uccurz between al sprite and dighty data. A sprite and displyy data molisioul is onted bi ferishler

 respets then,

The reserting as acomplighed ty wribig id is the Intorrupll Enable remptor 26, If yuld haite the: 1 lo the कomresponding tat, the same țil in tem:sker 25 껀

Bik 3 of the Intennupl fegister is set by the light pern during zo megtive tansibun of the ingurt. Hit 7

 actually leart the WIL. bat 7 of the ntterrujpt Enilible reyister 26 muth aliou be ser to a I.
 Lo the proplammet. They fet hin dede the gruecn tro

 sad repair to have d good iden of the inlerrupls sa that you can riake PERK and POFE 中Ests to delerTrine 钲 the regigters ife operating prophaty.

LIGHT PEN

Part of the leghe puil mechandin in inside Wac

 the TY. foreer. the exacl pousition and det it twitchen
 regiblerg are 19 and teb.

The callude ray werne the Th seren lame ow-

 spat that the light pen is truchime the peti is actrvated. Sirme the dor is tuly lit once encry rister
 fry

Requster the latches lac x positan aid the touctu-

 fixathough from of to 511 . Regeter 19 lutchem the

Elegrater wh lathes the? foritiun of the lught

WIDEO QUTPUT

 defital circuits of the romplater.

 video ntgrats. The Yic is a digital-bo-mided lewide. If you test all the ciguals thowill as far, the lay probe Teneals their digital stater- The bame lome

 swore razere exellent tests. The oulput signilas are
 pin 17 , the SYMCILUMINANCE posite shgal satainger the atuad witen, the wert-

 the polor burst und all the colore that the diesplay th

supponed lu show. Gefer to Fug 20-1.3. . Whet the
 the resull ate be ingut to a CFT for display.

 T\%,

 letion
 lug form and must bex lyaced with the ordinaty TTr

TESTING

 to compart tour readinge from the Whe. Min devid-

 aid of the tests.

21. 80-Column 8563 Video Controller

V
 puts a canyorite colit Th' zignill that appears

Ctich frapics thagh are not wo engy manage-

 mands lo use them. If yor are arl enturepbyd
 chrome graphive working for the fullure there with

 there are two 0Fistage, From lilif there afe lins
 butput stage also hus thee tramastors: KI, chl and
 cussed later in this chapter.

 Df the pixels in the cturcolandillisplay-

THE B5G3 RAM

 store by tes; Les stomes hits 0-3 ated Des is athe to

 four of the pina: when checked with a bogic probe.

 nected $4+5$ wits and accordingt shond shew a

 oll anather 2000 byles, the screen ationbuter are
 color and snome the wawctenstics thir npleas cm

 ret bock that it is to enhame with attrilustera. Each

 tnhatre

Whis ing controll the colot of imematy of the charanter in emall blecte Bit if wrotes on the inten-
 Actually, the color call be one of 16 , 觡 in Tillthe 21-2. Simply chonge the linitro thit of ape of the to deci-
 พ

The backgrand oolae lior the rharnoter bituck sh contronded by arcgevor in the stint. The register

Hit 4n wino sel to a 1 , win catse the charartes zand brokground oxhrs tu amideh back wai forth Thix andeatr at blinting af the choten charactar:
[n negister 29 of the B501 ts. Hbe urveringe charnelexistic bontroulled by haits 04 of telyater 29. Bit 5 all the abrihute byte when ect to a 11 wans an

 A 1 Thestis the charater and bicherourd colars hat to their onikitial setling.
 intd action. These udiligntal cheractera ate the dill temate charaser Set
 stant the chatater sel fram the charimber HOM an
 of the character see is loaded indel lever locations. all the tup of the s563's Rhal.

 prowide the charsiter wold, the blower, the enoter.

 composte monochrom TV circulter and the RGE! pom-

Ry $92-16343$. Is patace in the pronter's ctaracter bluck ost the TV screen.

The 8563 Registers

Laside the $85 x^{3}$ atre 37 cuntral registers ${ }^{1 / 3}$ like mowst of the otiaer registers in the compheter.
however, these registers are not on the system memory map. The 8503 sysiem is m an encuave ard the repisters require spectal techniques to be contacted. If vou ate able co set tos the registers atak their 16 K of gersunal K.A.M and nampulate them, you can run excrese sests on the nixit wystern.

The 8563 only haw Iwo ferations un the Cliza mervory map. They are denimal 54784 and 5478.5. The 8563 is addressed by the processor puthing the adtress bats All, Ab0 and A9 unto li3, the Tilnsi338 elecouter. The decoder in lurn outputs a chip sefect. CS856\%. This turns on the 8503 al pun 7, aCS. The
processur then sends une mure address tril to the R5063.3. namely $\mathbf{A 0}$. It goes in pin 8. - RS the register select (Fig. 18-8)

The repster at 34741 is the addreas register for the 37 intemal regusers. The interns registers are numbered 0 -36. The regisiser at 54745 is the datid

register for the minermal rekisters, These iwo adfresses in the system menory map are the pout into the 8563 . The 37 internal registers conesse of two groups. One is setup registers and the other is display registers. Sctup registers are. used fo make sure the correct charatlens and attributes get intn the proper character boock. The display repisters produce the correct characters and conduct the altributes un the characters. These registenn are vieal to make sure that the NPSC staunards atre in phace in Anaeriza, and PML standards are in place in Furope.

Table 21-1. The 8503 usen eight attributes to enhence ine 2000 chseactor Hockts.

Ent Mumber	Atribute
0	Intenamy
1	Bise
2	Grmm
3	Had
\&	Elinkıry
5	:indorining
4	Hisuerse vismo
T	Alternater Cimaractor

In order to read or write to the intemal registers or for that matter the $8563^{\prime \prime}$ " LUKAMs, you coust pass the bits through the two externill registers.

If yuu want to read the contents of eme of the 8563 reginters or write bits th the negister, then you have to place the register number from 0 to 36 intro

Table 21-2 The charncter block color cen be choeen by inatalling binary ble 0000 to 1111 in bll poations 0.3 of an atcribute byte.

80.Column Bnaic Color Codes	
1	5100 k
2	SWhin
3	Clarb, Hess
4	Lighe Cvan
5	Lres Forple
ϵ	[inme Campr
;	Dara Plise
8	Lyen vollisw
2	[anes Hisprip
:	OJth Vellien
-1	L.ght foxt
-2	drak …9n
: 3	Veblur: Coxy
14	Limblit Jiter,
15	-1raht Ellus
18	- 1 ght eray

 ther is in pidece yor can apcess the repgister by fead

 [rist yout misti write to thr registers as depariheet

 KAM. Here apain the ertire exercise noust be dome

 vele thit wrikes characters to the wider fathe in the
 Frould hlow the characters pey wrike to the zoddresses it ingeg in the 8555^{3} ' personal kAM.

For more detads on the regusters and what caut ture ders froma a programuring poink of vew. please
 In aif you to ywur grogramming efforth

PIN-EY-PIN CHECKOUT

的 1022 , the 8569 , but troutale could be happering in other pairts of the crienuts.

Whent textieg wider curtput rircuita; goed tech-

 colveretw. Trula can start with thi lapie probe and maybe ploct up an theotrect realding
 itine pins $45,45,44$ and 43 , Fig. 21 in Thes are the

 monfre of gray spale info one pixul.

Atuatho

are three cutbode beams if theie culur CET. Ewar beam is arranged to ligiti une coler phoaphor in the

 Entensity. The inturgity control determiner hew

 mweitut is used, the innenaity coniteds ther pray Ecal? that fe pronduced,

These Fofr pixel lighlizg sigrals exil hese fum

 Fig. 21-1, Inside the bitfer are aid of zantiberts

The idendical signal mevement huygens fir the

 Wherere live tignal tase mext fromp play.
 and berixuntal syme nigrudt lo ge with the Rtital wideg, The hicrizancal syac loclat the borizondal wo-

 tirat oncilator iri synce with the wertical catpul of the vernputer.
 and. The signal enters, the bulfer al piul 11 . is ampliGied and de then gent to the RGBI cmanetos from:

 and tate earily bee setro on the ordand TY service

 담ㄷ․

TEST POAHT CHART

122
G56. WIDEO COHTROLLER

日5E2 SOOPE PIETURES

The Honochirome Composite TV Slgnat

 the \mathbb{R}, 3 Hl port in Fige 21-1, wote the taps on euch of the six cutpat lines. The taps firumit the red and

 frinet bogether, zad pat through a bulfer form lis? The indensity line tap other bulfer from ILG7. The limt bulfera, arie con
 theif ostpuls joined. The resultant voltages are thet
 yislue
 horixantail syme outpus bre wonected to pore

 KGEl chntector: AH thiy Fowtion there to an
 5 sernid

 cxcept for the laut that it wers turstracted from the

 a monmettioner rimidir.

The Videe Dot Clocis

Al pin
 sine wave signal becalse it fa 16 MIII - cever bither

 The abick makes its owh master frequancy to ded

The higher fequmay, fryt of all, is geeted :0 sixe the: pisme for FGET difally purpores. The 40 -columal sytreff
 rinte- ln W-caluma wrotk, the nartnwei pixcl mual He worling with a laster frequence for it can tuma off and minister.

 produde the desired Erequarier thal emer ge out of

 the wharatict dock CCLFh, and uses pin 1. Eren

 however, that pulse, for testime pirperes should be
 defectire.

 at pien ene
 at pimis 47 and 4 ct

The ReardMrite Lines

 prase.

 37 though will probe a hiph heciuse it is ideturemg +5 uolts to the chire

The Ouher Eonirof Lines

 GS at pin 4 . Note there js an asterisk in font of the
 chip to be unlucted. The aignall mataring pin of is the

 pres hixy.

 Was araled frou spstens wheas limes and anired

 ェ๕ㄴำ。
fin

 hegh, the B563 with perritit. reads and writus to its

Eutween the trof diup gelectis and the action wit

 internal rejeters.

 are thed there to loeep them rut of the way．They will and probe a bew since they ane at ground．

The Feset athon the the $8 \omega 6$ is cordurted
 hexanse it is med to the shater＂RESET line．When the time is low，as durisy intial gerant up，the Gre

 Ther are：

 reading．
 IT pulte from interna wing kit，

At pirs 25 政 the impat for the light pien ellea used It juturea a high．When it is a 拘估il will place ivito latrhes the wettical and horizontal blocil prosi tions of tle enteracter it in dealirity with on the display．

22. Sound Interface Device

T
 ison to the vilc and the refers. The gla in de-

 rhe sputher to the TH pionitor of semparate audic system. The cowated autfo produces : ill the thated effects to Futher exulte Lhe praphice ty to mithte raverial inctrurneals,
 tote the sound effection. Ioun man wile lo 25 of the regiter with the BASHC POFE gatremet. The

 the PEEEK function. The read resextern are also ofat

PINOUT

 the stए it ontpots a tepicter. and dress The hight

 selgoted feghatr. The Sll akedre whie signalf. It

 of ROM ig. Both the read and lhe wrifes are perfformed doring the ligg of 11 MHz .

 s.

 anll

ous addrcsees. Shunkd one of the extra registers be writtea (0. Sil) simpily ignores the data that arrives from the processor: If one of these registers is mispakenly read. data will arrive at the processor bur it will be meanumgleas.

The data lines to the S(1) are the nehmal Di-D0 atturhments in the system. They conmect to pirs 15-22 on the SHL. There are data bulfers in the Sill)
to handle the data trausier. The three-state buticers are cas when the 8502 wntes data to the SID. or accepts data when the SID is read.

Pin 5 on SID is the "RES input، If the reset pin is brought low for at least ten cycles. the SDD will restet all of its registery so zeno. This stops any audio ontput that might be going on. The reset pulne. is the same one that uriginates in the 556 and starts
 lim.

 arywhere reas the uther digital circuits. The TIC thoald be comrected peparduly in the swo may Both the ututio atid the wideo oulfuls can be dam-
 are traversing the cyitid bus fines nond clijps,
 gixe thr drang wit theTz in the SD. TDJ

 line tow is separdter in the ellort lu kecp rivise herebs

 temal wainur comisol, The whme tr controned ty 1be plogenamper ard the data he spods to the corr-

 Re groult
 the bute dif an quermitet follower in ITy. 22-1. The

 the of modulater and allob can be tapped ifir at the audynisaders gilig.

SPECIAL INPUTS

Thes STl kes. wime otha rery writul inputa,
 male form an exteranl where suct way your wice or

 unitr restrotion whe tumber of udriteral mips you cota mpat is the nowe that each anditiontill chip addr to the gutpul. A targe cumpher of chipg an be fipul.

 F- These infate arm connected awer ar pair of limb
 sigivel 10 opprate mith-m pait of extemat 470 whon
 tratics the input volidege.

The lasal speciul inptits afe all pims 1,9, and 4. These hotd the intomating upacitors foce the til ter. All of thase ingutiare dithcused in more delat

 [aparams are the polysilyture trpe.

 differtil veluea. to exterd ar felute the tequency refsponse

OPER点TION

Whe sily has troet aeta of circuitg that wite all
 indindual wior- The thoir oprates as hotal woice th each drant tan ying a eolo.

wowe. The patch cim he wained wer the sange the TY: andio wall reprehtuce.

 in the dutio. The thillerences in sound aft called fage coder:

The lnadreses of the wadio is contrisled ty the
 ta create an ennelope around the turition bo bontrol
 abilily of the enwelophe gepration.

65d The proctitior is alde able to reap the ferr
 thim the youes of POT a and POT y: Arother of the registerg has datio tram the eutwetperegister in the thirg bet of cirmitis: The bst remister contaips the
 cilatar.

Theqe tean watpats from the: Bill gan the uged
 other audio to produce sonall effects. The chamgig Ircquency of the thaid fuscilutor has a tandorin trawemend. If in whed to penerabe randora mumberc that

 opronte.

RESISTERS

[ferisilers controk the wictuits that Remerate the an-

 functions. "there ate geven registers asizned in each puice.

First Volee Registers

 tor in the firsi werce. If fau POKE a deizral nom-
 note. fin your quscrs graide, there 范a able of the numblers and what muswal nutes they win gealrate When lpthrial.

 wired legether to form itwo byle refistex. Flowmer, only 12 of the 15 tits stee بged. Four of the
 rescister contrnls, the pultore width af the wavefurn

 कhanges Efonl frequericy to frequeray.

The pulse ton wary From a conespan dc culput
 and hows al the other extrente. Tap proderation tolin-

 ane plucery in the remisters.

Vaice Control Reglater

 Cate bit The actual detilils ate dismergend Larer in the chapter bat the tit coultrols two tunnetros. When

 over.

Bit 1 w the SyNC When it is sel do 1 , tone iss-
 aitha tur produring desiratite harnontic sumds.

 resets the naise waveform of the oscillator and the

 it asefill for the programmer to be sbie fo syyn-
 cotade sistl.
 trangle wowelurt in in the tofite oscillator. The tri-
 ruen As ag matio ocilpull. it sicumds something Gre: ${ }^{3}$ Allute.

List 5 mhen set tu 1 turn the sawlonth wave-
 stirumerat eftect.
 forma in the percillatar. Thire Pulke Whath can be ad-

 profluced froina hodow borming siquaite wave to a squeaky remply peep.
 ture ba ltue randum devize. The rawdon mojece ciun

 50

Envelope Generalior Registers

The ATTACKIIECAYY rewister and the cus-

 Ta rohunbe, that un called the whiluck rate of welume.

 atay bits.

$$
\begin{aligned}
& \text { aever contol regislers }
\end{aligned}
$$

 ano the relogst

The mid reme dif acurd thrt goes throrfit al-

 used for the sustain comblul and the dower Buts for
 regieterg, hie mulat foalchw corelilly all the rufer nf
 producen with attention the detaik.

The Other Wolces

The two wher whices and thein serea Teristers anc ensentingy identical to the lost wabe. The ondy

 -1 :

When tile worets ixe apcralled, jor motid have
 duce. West lbere ive the thaice of the wawertape,

 to

Filter Registert

The fort tw
 Itegister. llawewer, anly 11 bils arce ieeded for the.

 of the filter, The frequeray The regrovers an lue weillen the whach makes the

The Giler can hat tunell to treancle at parlicular

The higho bits of the RESTFET reygter are wired sin they nam tunt lo a pricticalar fremuency Fadye. Sime there are four fikg tor the tentron, 16

Hits o-3 of the register Hare a dithent peti-
 Eal gignalg throgeh the 同ter. Bil \square works om the roult the First wice takea to the andio unumat pin 27. Whan bte th thentred to 0, the woice bytasses

ModerMolumie Register

Here atgin the eight bits to the Te Misler yre
 forminf: simear fobs with its forr bils. Tho hagher Thyturn bive $4-7$, dieades on the mode of operalion the siter wrill serform ill. Bit 4 战 anded the LP

Bit. ginme it wanks with the tin

 tenugted This produccs hoarty sumads.

Bit 5 站

 cies atowe and belevr the bard are atwouted. Thes mode pruduce mormal sarub yith no harmotic

 the zudm putpat cirowils.

The dower mothe of the MoLEMOL register

 Ewen prodide warring yolitar tevels

Wrang and Fesding

 POK Fid at with to check it? operation,

The nest four rezirters are reid-uly, Bastc
 1he bels.

Pot Registerts

The ment two rexaters are the on where whe

 togs. Ecior to Fig. ze-9.
 per w, The Tidue is always the present pot settiry

OSC s/Random Register

 bind woine by eetulag the nrise bit $\overline{7}$ it the cantral Thengter to all, this teyoster atored the binary nuth-
 remporstithes the inper eight fita of the third

 Fandoci mumbery cid ther lien reat by the progetsor

Bucide produan ratatom numbers, thes rey
 proses. thine this register ia constantly chanmin and
 different qroweinros will produce different types ol?

 form is gencrabed by the thitoll woice.

The OSC MRAMDOM IEgistar will thetil beve

 onntrol tepgister is sel to t, the triangle waveform wall drive the ChC D/RARDMM regeter. The reg-

 thaing illa incrementing ik will gioply stact
 pero: n gain. At thal tiroe, it will gro bark ter the tolcremanting.

The register can reeord the action of the fulloe
 from high tes low sand beck and so the. The regigter

 senl inherwer states.

 genemater br chatning the fifferenl weventapeg cas iliable can he ased in a prempan to prowhes sound efiects, Combinglion of the regitars anmern phes. the bite gererated by other repipters can follee the

 the escillat.ot.

ENY : 3 Regititer

 Eivelope: Thes 工egister lets the Rrad retad the out put of the therd wice etwellope teberallor Thes ref

 Minto saukd eltect, Refer bo Fig. 229,

TIMING

The STI 正 accessed by lie sfor lu wery :Itaymetneward way, Thus 29 repisters look to the
 Fratell bath and finth are lised tha prodube sound uticcts.

 Es acceraged only therig the hiph of wh which com-

 ing divirnt ir Fig. $28-74$.

The mithe-only registerereceive brelr ronterall:

The read-only remisteds place their poultuls
 cese time frohn whem the crap is sefected till the reata

 in the data syaspm.

TESTING

(

FD0

 the mote in the high [requatrof thige, Tlie fourth

 Woilume repitate. fo check out the other woine do the fugh froguenty regbister gimply sublatute the

23. Inputs and Outputs

W

 cempurtisi.

 titrouph tor Wice of the 8563 . W you 표

 picture ut the low charditier appeara ona the 'IV' dis-
 'wibl the trik appewta huw you thotald contimse fras mpropuge. The data an the soren thus becomes an input, throanh ynur eyes, back inle your beang The Cl2 Fta y

Phesides tole flacing with your the c-128 is able to reacive inpute from foysticks, |raddess and a leght

 Exputsion purt and vither devices intor hes memkry тางค.

An Tabte 2illis shows there ire theren port

 that controls llue codectle motor as well as the lape

Tabla

Connertor 哖m	Desicription
以动 1	
¢－ F_{5}	10－Pin Cussulce Pomp
c－ 3	4－Pin Corimatier Poit
己动11	
075	
CNE	E－Pin Forial Fort
hk	
T	A－Pir Compersitu Vadea tuspul
CNS	24ㅍur Ligee fror
610	
为11	5－3／
CN：2	
telest	3 Pin liFC Light Phul
AF＂Denpl	

Chnmetne tho

 play the coivano

 the proper interlwing．Cotometot CWH in lhe

自itiondunc．

 gircuit．It is a little netal boy concoinge the tram－
 Dut piug rearmbeng al phone jack where the 72 ohan aible from the cicar to the hame TV andenal fer－
 of this charater．

CHEMKNG OHT IFO TRICUBLES

7en in being catsex by the C128．or the peripheral

 malide a culbetitution．Fiom iuntance，if the washtu
 spare eassprte or try the suspect cas enette on a sece－ ord computer，If the spare cissethe works on tory Clith，then the tratble if in the criginaf cassette．

 Itailitimctimunt．
 apmattic pengram like the Git bortor，mentioned th

 poices of sip，the fingle sided dist system，the printer，tedsectle and the jopisticks．It tella you

 Wed bedract only a peripheral bacting up and the resu of ille computer tin ran the giromain．

CN1 Expanton Port

 han 22 rommectiant on the top side fod 28 sheme on the louturn．This port is the one with the masal wer－

 of the sidytill that are sipplaged to be dxarsing through the emmputer．

CA4

"The eight dala bus limesi ate boncteted to pins

 hug, TAE5-Ths, whide R-Y are nomazerted to the

 tovd Jight wher ursped ard goes on when forced how
 D. Piant "chip [13: 741 3134.

 tone WIC gocs rito action arid sthy low till WIC

CN2 Cassettio INO Slbt

CN2

 internal IO Iegbitcr. The gettitur of the repigter bite 3,4 atd 5 decide whill ativen thene lines are to take The g50ne teal point charit showe their Burnal
 is belff low

Tie cully rcanaing pin it the cassefte read Il-

 D-4 know and the read mill take plase, Du4 conact
 Wheta in 图 pulted bw, it : sgrala the chip that a data trasation is about tratake phac.

CHI 3 and CN4 Conlual Ports

 worth, mither the device is toraken vo the Coupspulet
 bre lived. If the feplatement restaren the actiprity then the of dire was delectire and the lruabre has been foamd. chmuld the spare onic still nom operalk, then

 joy
 pins thal tuw I 4 of the keytoged nre conctucted
 arged to operate bogetant, there: is no gpparcem corilict.

 The butcone no the joytieles are from poum in and go
 the hantons afe ed botches. The posibin swithter
 buttons bre Tite switatug The smitcher are connected to the lagraf the lills at the port fegisters

[^1]

 shontse the thit to a lems.
 the toro ports. Wis with the lipre probe, A high atrould
 The keyboratd is untroucherf,
'Iher ports ench bate pin 5. thantroil Poed il mat-
 Theste Lew inputa are checkud easily with the lopic probe, They ater buth boge and remain dow all tho way troty to 包

 e goad tight pen will low; THet for the stadity high the lutilluc users to aperate mith.

CH5 Keythound Port

 chargiters if that was

 mulh of that pusticular row and seter the heyboard fort plas CW5 at une all the row pibs. Far instane

 to jien 24.

At the 80 inlewermions thatyh, the preforsing of

 rows and ont ol the columas ate shoted toyether,

 pressed, the whilich shurta the row to the collumer

Lrnmedor CNE is the pert on be printhoard at

 Fow zomactions ary miluld to E"thi.

The colund cemberciinag.are culputs fromi CLA 1
 the keybonnt. The pulses, mawile griehly in com.

 icge a lece on the boadd.

 preseral ley giver the databs to the processor. The prowessmit thikes it Gura thece.

Ch5 ls the pont befwen the hegthand and

CNG 日and CNT Sotal Ports

 prils.

 such as. the wisk drive. Figure ?

 xHROLN Tine wime hocked up tea a ourader wl ex-

 Lipt responds:

㻢 lalls,

 crased ixtrr in tus chapter.

 qulyed with W"Mi.

AF MODULATOA

Is Ehaphet en and be Master Stuxnmire the
 and] fi are the STNCiLCMM and CFTROM'h nignals

Werartrile, pt the tup of thin scherretir diagrath,

 The widero ard suldith arp: rendy to pomer from the ر)

Aht the bottom of the triwinf in a circuit baged around amother 2 s [46f transistor, The thrsthot
 ther the Charnel 3 or 4 ommernal frequency. The

 cuit it abockupled deredy into the EF Ontpul line.

 sigera will be geen on clasarel 目 of the TW-

Berinfer outpationg the TV ctannel 3 , the RF

 5 of the bers. The signal condime all the videar, color
 an HFP^{2} cartich.

Acrong the $\frac{150}{}$ pF capacitior is the enjitter of

 is connected. At this jungtire the moles sigtal can le whanned

 mects ik to pin 6 af the box. Nom oulpol comes litan the boin for aution. Onty contprite TY Iman pian 5 nwion fom pin 7 :and symenumance from pion 6 ank

 connembutis.

CNE Audic-Wided Port

The Af Modatator conneth to CNH, milled the

 there are ather milpuls tor: In Fig. $23-12$ the conn

 5yme that can be gonnebed tuta a comporite IV

 Lix out of ping I and bor syNCILTM and

 rect manitur, these I wo sibprats wodl probably not be:山sent ait all.
 directly, 'Thes signoll is used lor monitore or for any audio amplifer. The stignal is pure iaulicu with tu
 RF Moflulator box to be pigned on the thannel : or 4 carncer that andio is ont tappotd ull and unsed on the CWB, Cannector CNB ghtr aindo straight fram 315 into pin ${ }^{2}$

Fin 5 is reberwed [of thexternal audio mnot.
 Passes through a merile beid, FH15, perer top all a

100F resistar to grown fixd throwin a - 1 rapacitor化

Connectar CNF wind bip with pin 2 gromsded

CNG User Port

 [xithry
 of ClAZ, sherwill in Fig.

 ing operations They are pins Br *FLAG, and pin M.

Thon the top sidc, pins I and te ate yroukle while

 phase and 5 fotk ace with a mernetive phase. They carse from the power guply tratifarmer.

Pin 3 is attached to *EMTRES. the reget ctr-
 by givoting it to grount, theth the proongor will reatant and rennitiatur the entire macture. Thas a

Fkg. 23-15. Connectar CNus be en e-pun plug sthus cunpues vioo sugnatar Oul of pin is comes a composida colar TV algnal thes will drwe a TV monsor Pins 1 and 6 outcous ihe Chrome end Symelluminance algnals to drive a specal cmect monivor.
a mood service irst. The Cies will be rextarted but if there it any data in memory it shouid srilt remain if the computer is nperating okay.

Pin 8 is another handshakine cumtrol tune that gons in ${ }^{19} \mathrm{C}$ uf CLR . Pin 7 is the serial purt line that can transfer data to and from pon 39 of CIA2. It is a valuable and much used I/O consectivn. I in 6 is the Sernil Port Cumter tme. for CLA2 that works with Pin 3 .

Pin 5 is the coumterpart seral port tine to the heybuard CIA]. Pin 4 is the Serial Purt Counter line that also gues to ClA1. The user pert therefore has (wo uscrul serial ports in its reperficie-ome roa each CIA.

Pin 9 dues not work wish the other pons. It connects to the -ATN line of the serial port, CN6. It works with PA'3 in the \&AO-PA? port regester, the whet une in CIA2.

The user port is needed mostly to handie the L/() for mudems. The port can do many other jobs sov. For matance it cam perform the $1 / 0$ duties in communalang with another computer.

CNIO RGBI Port

The RGBBI commector, Fig. 23-15, is a 9.pin [) Iype. RGBI stande for Red. Green, Blue and Itten-

CNTM

Pagar ilew
s

Fig. 23-16 Pins 気

ifity．This is：an 80－cotumn output ind handers the signale the B5G3 generates．

 8 and t ．In mader to displat the the picture，CWh
 citruits in furn do the followitig．

The three oolor signalk，R，th oud B：drive the： three electum gune in the tobor CRT．The Intett sity ：signal determiones the ineprasity of the ebectoxn
 the brightnes or haminance on the ecretra．

 trequienioy．The vettical syme sipisal kiths the verti－ Lill sym Grquerny，What lie proper sym，the tisk－
 lit．日t the corrsete．places on the boreent．

LEO PILGT LHWT COHAMECTOA

 ctimezar．

的 wa color corapment．

 and Chth are the inpuls for the parer supsily ar
 Figute 2r－1才 is the L．ED palot leght counectigt．

24. The Power Supply

T
 24-7, Fig: 2t-2 and Fig. 24-9. The supdy. is

 Lo pins 3 and in to CNI 11 on the side of the condertiter cose. Fuse Ty protectrablis. 7 wote de matput to the - other wirchits in the pwocr box
 writges to uperate. The 9 . 6 Yat is injected diretty
 E sent to a powner regulator ciant, Fig. 24-2, at the

prwers ptorlithy every chip in the machine The

 amel ind st capatare to kround This pronding in inside the 120 case and is there to forake sure no ypiruls osillations like plabe and hurt the dita promesirp.
 of phasie with wach other and thes fomm a protentid
 gource vollager prondwedt. One is an 11.5 woth dic forll the other RaI 11.9 wolt we source:
 comnon in the connulper. lypically, the machist simply grow dued if the siverce whitages are ow appliest. The luses conld bluw, Iectitrers. shoth, xefulators upen up, the trinaformur br ansother

AC HEAPTER PEDMG

 tox gxis.

 Even the bad componerit the best way be thectit 0dt

FIRST STEP

Wher the compater pares dewlatiof yot suspect piowet supplyy trouble, the firsit que-glume is "which
 bpard jurl ?"

Withont phaging the ot achater jatra EM11 in
 what sorket. Wer offor switch is in the porper bow mon it connes vil when parged in.

Fisure 24-4 ghowis the towat of the pluy that matex indo CNill. With the beymay all 12 gichath, counting chockurise pin 4 运 at 2 dickect fin I at
 5 is the center of them alll. Whith in wokn, place the

 the woltare is colay. If the +5 yolth is missiad then
 2. can be ifgnoper - il has to coturetiom.

Wher the +5 wolts in present, check the rolt-

 werced in the bext settions.

Fuge Considerations

When the + 5 moltif ig gure, that exphint the reason lior the dead bomputer, If your porare box
 then it has been tweommended that in is more trofble tham in is wotth to pull and hack the cincult frem.
 the fathest ard mast protiral semblim.
if your power hox is easy to open and the cifpaits fairly acceratule, thetil yout set the funes. Diderent boxes baue dificent sire tuse but they R ford if you find aldad one, chage it with the sallo

If the +5 wolls th misang then the fuse is in the
transormer sechidary wilking that proturem the

 ynltts－

 it upuris，then the is War will disuppear．Tyy teylac－ ing than Eusse．Itrowit le a curager walue fuse of pers． thaps 1 or ${ }^{2}$ empr

Chiances are koul that if yon fondeltad fuse and change it that the curuputer could start operation ingrin Howerer．it if fress but and the flese blows
 and they must be checked sut and feired bethre the fore will stop Lupumg．Letts goinvide the powic surgaty and seep how it wurks．sto we can pluztle outh

 prow

Pawer Transformer

Figure 24.1 ，titarte with the：tric three－rronged

 ing yolle．Therse mapaiturs ste liere to smboth curt
 box with the se lime inpot wollage．

The LEO walte ar enters the prinnary af Th，the

 CN11．The 9 Vac axime entrance to the printhoxied
 into a brudge rectiver melyonte．

 There 开e trupl legs in the tridge，cach with two di－ odeg in serics．The bidserenctifier acts ass tull－wave
 Brimer

 of turreak．＂The 18.7 Whe is then sent to the sepond

Power Regulatar

 Yolte titer is is proccased in the repulater crrait． In the cimaphe tircuif 1 ＇m ulsing as ani illustratim， Where are a kit tod connponens that are gung to work

 and hofid that．+5 wolt level weir wilde pariations of
 the +5 vults must surply．Tr other wande，the wade－

 and diaws mare ！hian nortial currents，thien the regulatoir must howd that + 高 widat ateady
＂toth that mesas is．the cirtuita aje poing to
 the destred $+5: 2$ wollta，the etrex will be nowed，al
 aRe in etrer will be erased．This tesollta in ketping the wrillage at $+5,2$ moltis tor matile？what

Whoul geing into a bong disisertation pin rejer Fandor theary，本能 idca is that the Hower Regukator bystarn fectives the +18.7 yolta ind zunverts il to 4 15 sit watts that will wrotk in al trouble－free männes
 imiecled intn CNH1 at pin 1，Ton Fig 24－3I I thum pins 4 and 2 ar foting gr umiled，it is posquble that some prower brower could have thesp jinis reversed and ci－ thet ir both culfal be frowithed．

Wheter you text the ac adapter and find the +5 polts misging，wind the 9 Wac is present，cturaters are good that the reguranor tircuit has Eilltd．If you have an epuxy
 mentwited earlier．
 mower tras as mentignod earlier．

 п.
 not try thime it apart while it ta plugged ital It depe
 When plughed in
 The ande apart. Fou wh theta encitnter a thick epwy liyet: Fon will have to breare off the larer, hat ing cartho ghace the thasy contury elithedder
 epory.

If gran ext chie of the power bores thas cames

 repaic shaf casal.

Powne Supply an man Buand

 ramer The reguleled + Tralle tolers fris and the

 . $6 \mathrm{H}^{1} \mathrm{E}$.

 to parwer chups sot stribt regalitiontis not merded.

 ponier tore but is moll as critiont.

 S of U59 are heaviry fleterd.

 Fort In dobilion to the felt 10 CR 13 in a compuan

POINT EY PONT CHECKOUT

 colopthente to pins 3 and 5 of CW11. Thine compo-

 on to 通道 mext leg.
 thend: If it is oow, theo the two thindes, CRLI Row

 point to pint shoit +12 whts strolkid lue there: I

 shorl the whitsge tomid be chatged foum +1.2 woll: to spone other valupe Jeat the caporytnes if there is

Thenet trage two legs checla wat way and the
 1 OH CW1 1 It the +5 wote is als CNI, then all the

 STi 1 nad alf the hypass int filter capacitors shown

 any ut the wapabore sbart, the +5 yoder would dis. "pteres

 fust extrabed orrel the detect. Fonn't forgel the offon sulfall SW1. It hat lwo sectians: vae an the apper Jow and the sedood in the bottom lef. Que simebouk euld break optill white the other wide temains intract.

Arpather parsibili y is the E- wo

 sutpecter Either an or bottry of them complat be dafentire

Should the transistare test oul of ay, the prime
 Writh Modulatot. The vorrect voleage tre shoing

Retgulalor Pulte WIdth Hodulanar 	
	[12 Wertise
$\begin{aligned} & 4 \\ & 5 \\ & 0 \\ & 4 \\ & 5 \\ & 5 \\ & 7 \\ & 1 \\ & 5 \\ & 5 \\ & 17 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 18 \end{aligned}$	2.4 2.6 3.0 1. 5 16 ' 7 73.4 - $13: 3$ 18.7 T1 5.2 5.2

 first test the dempnonents ofll the pin with the wrome

 Lurience wrofla mike the waltant digappear,

 cult the tullime fine hy following it and cressing acer

 detere

Appendix

LI Plumber	－arite tumbes	Ther Mmomp	
1］：	6此		$\underline{7}$
Ur			2
198	74.817		11
니	岳安	Fimplat luygetare Aphatior	d
血：	F5 ${ }^{1}$	Stumil Inderioch Chtr	15
16	FEA2	Phioroprecyesgr	4
リT	＋	Hentwy ternopemont Urit	＇4
LH：	74.	Custar 2－7put BND Gatm	5
LP	$74+3{ }^{\text {P }}$		4，J
415	直炜	14．arcprocessu	－
凹tty	0×21	Proyrammed Lopld frosy．	1
－12			－3
WTis	군ㄷ단ㄴ4		，
U144	74ㄴ5557		11
1115	7－4L5－25	Maper i－lmput Muhipleme	$1 T$
W76	P4LST1．	Hgax Ehmili Triguer	Tris
いけ	F4运放3	Octal Sersme D lath	$\therefore 19$
416	55005901		9
W16	2010	Wotw flay	－
420	4008	bumd muaterial Surich	\％
UR1	854.4	Yidual linmotaca chip	棠

122	8.863	Wides coritroller	14
1421	4916	［PFAM	\square
H24	P4Lsedy		10
リ25	46.6	ППAM	10
U0゙\％	T－L52\％	Quade E－Impa Mutbpere	8
Ue7	1－15	Timer	7
Ue8	1	Chock	9
4 EPG	TH06	How Inverier bufles	7，9，7¢，17
450	TAOE		
1 Jl	T녙Nㅣ		11
Ш17	$25.1513-17$		E
U39	716010．020	Figed Culy thenty	4
U3：4	51031942	Heail Coly Manmy	5
U35	3140006	Fleate Comly Mampry	5
U36		MOV	5
193	T480	Hox Amperter Butter	7
	11토N．4		－18
LIS4	TH252		4， 10
U55	74F\％t5	Tramerchige	g
	TALS57	Dual［ Fip－figp	9
TH，r	T．40］	Lsers Euter	8． TJ $^{\text {d }}$
5阝		Guta 2 ＋ripul	7
059	24：	12 Ybali hegulator	1
L6\％	740	Hes Eiulter	7
U61	r4t509	Cuta 3 Input MND tate	7.4
UES	$3^{3} 4185314$		回
LEA	TH0E	Hax Imumator Elulter	T，${ }^{\text {a }}$

POWER SUPPLY ON MAIN BOARD

Index

A

eccumulator register. 850\%. miengprocessos. 208, 211-213. 24
3Uzens :bisar $298-303$

85:32 muc-mpenemesear. 204
untiders rengister 3563 wrean com. rromar. 3.
3ddress suguals ài
 :5. 10
AND gane, 132, 173.179 .842
curcuir descripton of, 181
inpua and oulpul for. 125
multiplexer use of. 536
pip transistor in. 182
programmed logic: arrmy (PLA) and, 242
Thomstic and lruth talat for, 160
arthung. computing seguter. 202
anthmetic logic unl (ALU), 43
8502 merryurocesson. 209.2:1 claaning and complamsenting in, 210
mag reguler function with, 221
Plagging in. 210
logre matripulavions in 210.218
rotwing m. 211
staltang In, 210
Dystem block divgrom focavion of. 151
Qaterne owcillator. 14s
audio-video port, $39{ }^{3}$?

B

SASIC
oinaly coding and. 16 ?
fON for, 104
Duaperer switch, quad. 1088, 142, 146
manar cooring. 167
Diniory counter, 192
binary mumbers, 10 争 170
bupolar Iranseirtor, 50. 51. 36
oll map mocea vidmo interteces chip (VIC). 346
tuts vis. Cucimat Coumt. 19
blackening of printtioned. 29
butter. 138
bus limes. 314320
bvie size rogigem. 173

C

C128 computer, memory map Ior. 270272
Cef computer, momory mape locti: tion in. 272
cemsene to nlot 382
character colors sudeo imerfaco chen NCE 344
chatactor mentents 90 M . 96. r.herking out, 190
charaster faich video smitertace olvp iVIC: 302
character moded, video intertene chpp (VK) and. 343
chip changung inctonogues, as e6
chip shatron unuma $39-48$ syatem: blorik dagram and 150
chatios solpet surns
prograiminord inge array (PuA). 241
STMPK RAM, 90
ctripes
lugger. 19-53

is cesupration of 41.42
upsiof down nestalution of. 41
Clat and Cin2, 24, 33 .
clasning 31.22
claaring
ALU, 210
compuling repsser. 197.198
clacks, $280-297$
2MHZ mode, 290
8502 timing control anc. 283-28 r
godrmes tignals and, 287
comrol lines and 314
did

10．unimg and writimg lo periphemis 군，28：
 ．Aliuptr rela and，act

Witic and， 4 4
服第

OHTpilempating

subrnatan im，143

lpaniort all，193

porle tim，Ps

 1 FF1
toptirif 吅，335

campicke wireo port，
gonpuling registers，：B5－204．

conlind prons ssis
－cruritory リ自

 arit \｛biAly，aFol

7

dalay lintw，Pr
 $6!$

deta momplefar，－－
deximal numbers，168－176

diagmoric proxanaminy，1－19．

［1＂）
dicde GRt家，18：

dimplari．

Dinad camputac，H－6
dowers far， 2
由raply display 上iock

the tortir，T

normial 2－4

$8704+4$
druin Fowet．55
driver，무기․․ 138

LSI．ET－

15975

choosirt regioker his 155
Giala buy

Terary hijoul for 96－1［x］
mpmory relrestion in
 1
Eperation ti， 100

 srote in．戶if－sa
 154

E

F

tinn indow， 51
live lersh ，30， 97
 217

Plag rogitar，2El

Mix turtion what al
irflempl find thortiow zes
propermunirg gind，252－203
11 I上，！

\square

 3 तn

H

hiemdabking 学
complat if 4nd，我垵
than bullaildryers， 1

Fanadecimel codirig． 1 ET
herndesimit mombers，171，172
hood fitimital，20－2

1
「FET． 5

 $340^{[0}-295$

irgulldifpu：dEw ！mation of 1
 צル～ 215
instrultin rempler，Hive mbromictessar，204
instizetion sply
B102 micropticosw，213－219

in

1月9 ¢ ¢
」

स

L

Florms．－a

 54,5

｜fatizig． 54

varleugne im 137
 54，E5，T2

long lequ theres，24
？

 4ns

 82
Whe and vidor conlroller thips，if

M

Mail ©rdat sturcho 돖
 mectrary

K diastigrakion in，影
 E4－95， 24926.

｜7ipis＝gnailor，2Bi］．
insporthy rexizait in，255－258 logation th，45
 $756-25$

sinolde low 2
 255－259

 in，254－255

lese point crant tor．260

C124 locetions tor， 270 Hz 2
Cod Localiots lor， 277
CFIM moden irf

FEEK Bind FDME 日rd．ET
procemang end nordar hor pro FICE 2月7
Fistem block dimgram helatom it， 1E1

micraprosissore
 1.5

ntal lina function $\ln , \overline{t z}$

 151，75
 255－256
mediantume Teplaver．strand intior

 54，3E1
409 ch 40 ， 55

MFし
 15476
 154－160
 148－154
 156

 16e－1
multporgx thipe 100

N

$74 L$ Sind and $74 L T H 2$ ， 124
TTL ELCHmetic of 5y
सhロ5 chipe．55 5p，
nat potor in ditwlay，

नрп 1िस

пythen 86，172；793

0

apan rolleztor，12T

Dicun dexeriptipn ales

 Bral 24
आulat ingat 129

口ocillator，ascable，345

Gwiflow hag，2ry

Preg Filpters，momity mantagi

peripurngis

staving ancy umiligy wo． 290
prith EG

prop trangister

Fiputpurany 190
PGWE， $10,67,115$

тufthry maps and，EJT
rogititer lestiray woth，경

ing with 97
poppirg 20 目

［ Fownir Euprli box 35

remoridil 따，2427
power tranklormer，3ha，net
Fricxitgumpin ：

ainithond

clbagimp th，th

Holrionng raterts on， 27

Proparer 3iceds． 90.5
programp minnno． 200

P455． $240 \cdot 241$

 Memery molp melotion by 243, 245
Finculb lor 240－24

 1511
quad biratergis sumphe 143－146
quad npul hMD getdor，1定T－TD4

ค

 266－25

70417

buming if proprafis ln，114－10e

flop Phos for，1月4－115

 $110-1+1$
loc： 8 itor 마，14，4，4， 4

 151， 55
IWor point than liver tob

read buing banypa intorex п－
 Iruller artl， 3
roxchurito walup lime， $2 \exists T$

ripal－Eime cliccik， 183
［80
rogisxers

mannory mizastomen anit

Ton－

ZBS midoproceser pivert
RESET Ontral line，5tb，33．5

infull
lacealiar sill＋
outphts 마，1t－
 165
AGBị port，9，stes

Mow Findrex
及5 Tirfor， 102
ATh，다궁，51， 59
「ustor ehipe，4－501

g

Scloritt 1rippor，T4LS14，141，1－4］
ghbulk wide，E3． $7211-124$
sprateh pad lape gramisalo Tagivber
A9nsiflot chipes，55－5日

seried the sim rughlar，Th
surial zulput，TT
sprial pheta，atso

shifting
ALU， 210
computing regiser，196－197

quildured

 373
Riker roglayer
Fosslipr od 45
medehyiluma megistr in，97：3
WhPly and 16：－165

 （1）．賭
sparial inpors In，tat
站5
｜activig or 37T
｜ummp in， $3 \cdot 7$

 \＄1 A

되릳，tife

polintor，zow，mp

sultstrata，涫户ET．面
－ubtration by actation on mompian

Synptorn dipricat，1－10

DRAM Wacstan in，tras
manery tine lowation in 151
 $15 \cdot$
 15 F ：
MFM and Fopk in．This
 in，TE2－HEA
 1E－165

progammatelo logic arriy PLA bocation in， 151
AF modulater box yocalion in，14e FPDM chios in， 151
gound intartace derwor location in， T1S3
Wheter contrigige location in． 153
Wdeo nterfact controller roct k cenherim， 151

T

Hest proin charti， 119 4048 quad bilateral sewich． 146
445日 DFAM，459
7406 hex limenter， 122
7402 hes Dulteridriyers， 123
$74 \equiv 245$ minscaver， 144
74Fane quad injul OA guts． 130
 125
$74 L 508$ quad input ANO qiane． 124
$74 L S 4$ A shmill trggor， 145
74LS244 octal driver， 142
74LSotr minipleane，THS
745 sete guat inpui © \quad gata， 130
THLctit methof latoh， 141
Re563 Wideo cuntrollar， 360
18701 chark， 297
tond programs，willimes at，is
three－state，it
Three－Elame bulfars， 450
mitroprechsot， 205
threshate woltage for minerostanic damege， 32
nime of day（IMOy tuck， 77
Fimers． 146
ostripidx inforlacie edapter fCuA
find． 325
regtlers for，324
liming
cantral， 267287
DFAM， 101
signals $2 a 7$
Einning， 55
transcolver，74F245， 1.41
transilitory $29,41,48,50,50$
transloted adgregs bus 300
Insituing Th chipe，54－55
troubl malysis， $2,17-19$
troukherhooting tharte and schomatics，400－483
Bruth lablote 175
TTL chipe 32，E0，ExG5，EI

0

U mumber chips parts number and given namest for， 42
428 16－nin 时，146， 290
4敫泉10． 146
updata Pad ignation regishers 369 usper port skif

ψ

waskion register， 241
 24350
addrader end data rugisfars in，zt atributes for，34 elsaracter block oulor for，Sife control llines far，3es
motochmomip cemposite．TV signal

MFU ind， $1 E 4$ 166
Pirt－bypin chockput for，$\$ 5934$
pingut diagraft for， 40 ，ae
Fuld lor，35－356
readtwrite limet in． 3 ate
registers tor 356
5yblem block dingrom of， 153
toust point chart for， 360
video dat cloch 301
Kides display，smind okry yidedab． sent in．？
videg Eet Eloch 3849 video o6n－ troller anct 361
vicer imetaci chip（vC） 17.44 .61. 73，397－354
Edtrassing PLAM hor，30．4
bil map machas， 346
cheracter octors， 344
cheracter theth． 342
chirantir modes． 345
thack oftgonation in， 281
turetioita ed，1B1
graplics for $\mathrm{g}_{\mathrm{s}} \mathrm{r}$
Insito sotk operation in，24aters
interrupt register in， 35 ：
light por with， 352

MPU End． 160.102
pin 4y－pun opertalion val， 338 ． $332-365$
rasler register in，2te
screten planking with，34i
spritas and 347349
gyvitacn block iliagram beation of， 151
trating of， 753
thleo colput and，ak2
visual repairs， 2740
voless， 03
woldge comporator ticcuit，124．
VOM， 120
togir slate testing with．54，55

W

word regricers， 133
wrist strupping，37
wride liming，complow interlace addapiar $1 \mathrm{CLA}, 329$

营

K以णन gase，tos
KOF gite．185

\mathbf{Y}

vES gala 178 －178

z

Z30 mercppocessra 43．61， 231－239
sotdrase biz orginalion in． 298
block dilegram of，23t－2－35
chacks for，mo－2e3
connegtione tion 234
inoperalive computer and 20% 237
Instruction sef for， 236
lopio stalas tor， 238
Tom－pion 296
rogistarain，232－2t5
sobenaly thegram of，23s 235
spsem nodress bus conneotiún 90x． 234
system flock diagran locston ol， 151

Troubleshooting and Repairing Your
 coMManali= 12e

ART MARGOLIS

Hundreds of do-it-yourself repairs to save you time, money, and computer down time!

This sourcebook is probably the most important "add-on" you'll ever buy for your C-128! Packed with maintenance tips, troubleshooting procedures, and do-it-yourself repair techniques, it can save you time, money, and untold frustration over the lifetime of your Commodore-128.

The simple chip-changing instructions alone will enable you to cure over 50\% of the problems that cause breakdowns. Plus, Margolis gives you all the technical detail and advanced computer repair guidance that you'll need! Both advanced hardware enthusiasts and professonal service technicians will appreciate the in-depth examination of every C-128 circuit-including timing diagrams, and the use of PEEK and POKE commands to signal-trace circuits.

If you're a programmer interested in getting maximum performance from your machine, then you, too, need look no further than this book. The information provided here will help you gain mastery of your computer: In addition to complete memory maps and thorough descriptions of the C-128's operating characteristics, youll find:

- Tried and true service procedures for pinpointing trouble spots.
- A Chip Location Guide-a layout diagram of all 63 chips.
- Electronic and mechanical techniques for chip replacement.
- Test Point Charts showing exact pinouts, the name of each pin. arrows indicating direction of signal flow, and readings you should receive using a logic probe or vom.
- A master schematic of the Commodore 128, complete with all part numbers-an essential tool for more difficult repairs.
A better understanding of how your C-128 works will help make you a better, more informed programmer. Also, with the high cost of professional computer repairs, just being able to replace one chip will more than pay for this valuable guide!

Art Margolis is a computer professional who has written several bestselling books including Computer Technician's Handbook-2nd Edition, Troubleshooting and Repairing Personal Computers, and Troubleshooting and Repairing Your Commodore $64^{(\boxed{10}}$.

[^0]:

[^1]:

